Home Further results on creep behaviour of sand-cast Mg–2.8Nd–0.8Zn–0.5Zr–0.3Gd alloy at 0.56 to 0.61Tm under stresses 40 to 90 MPa
Article
Licensed
Unlicensed Requires Authentication

Further results on creep behaviour of sand-cast Mg–2.8Nd–0.8Zn–0.5Zr–0.3Gd alloy at 0.56 to 0.61Tm under stresses 40 to 90 MPa

  • D. Thomas-Whittington , V. Srivastava , G. W. Greenwood and H. Jones EMAIL logo
Published/Copyright: January 7, 2022
Become an author with De Gruyter Brill

Abstract

An earlier study of the creep behaviour of Elektron 21 alloy has been extended to 290 °C (0.61Tm; Tm: melting temperature). The combined results confirm a stress exponent of creep rate close to 6, but with an activation energy for creep of (310 ± 20) kJ/mol for 240 to 290 °C and 40 to 90 MPa. Possible mechanisms giving rise to this behaviour are discussed.


Prof. Dr. H. Jones Department of Engineering Materials Mappin St University of Sheffield Sheffield S 1 3JD, UK Tel.: +44 114 222 5508 Fax: +44 114 222 5943

References

[1] A.A. Luo: Internat. Mater. Rev. 49 (2004) 13.10.1179/095066004225010497Search in Google Scholar

[2] I.A. Anyanwu, Y. Gokun, A. Suzuki, S. Kamado, Y. Kojima, S. Takeda, T. Ishida: Mater. Sci. Eng. A 380 (2004) 93.10.1016/j.msea.2004.03.039Search in Google Scholar

[3] Q. Han, B.K. Kad, S. Vishwanathan: Phil. Mag. 84 (2004) 3843.10.1080/14786430412331283073Search in Google Scholar

[4] M. Vogel, O. Kraft, E. Arzt: Metall. Mater. Trans. A 36 (2005) 1713.10.1007/s11661-005-0035-1Search in Google Scholar

[5] D.H. Kang, N.J. Kim: Presented at ‘Advances in Solidification Processes’, Stockholm, 7–10 June 2005.Search in Google Scholar

[6] A. Bell, V. Srivastava, G.W. Greenwood, H. Jones: Z. Metallkd. 95 (2004) 369.10.3139/146.017968Search in Google Scholar

[7] F.V. Fanjul, S. Srimanosaowapak, K.R. McNee, G.W. Greenwood, H. Jones: Z. Metallkd. 94 (2003) 25.10.3139/146.030025Search in Google Scholar

[8] S.-I. Fujikawa: J. Jap. Inst. Light Metals 42 (1992) 822.10.2464/jilm.42.822Search in Google Scholar

[9] W.J.M. Tegart: Acta Metall. 9 (1961) 614.10.1016/0001-6160(61)90166-3Search in Google Scholar

[10] R.B. Jones, J.E. Harris: Proc. J. Internat. Conf. on Creep, I. Mech. E., London, 1963, Vol I(1) Pt. 3A, p. 187.Search in Google Scholar

[11] I.G. Crossland, R.B. Jones: Metal Sci. J. 6 (1972) 162.10.1179/030634572790446262Search in Google Scholar

[12] J.E. Morgan, B.L. Mordike: Metall. Trans. A 12 (1981) 1581.10.1007/BF02643563Search in Google Scholar

[13] S.S. Vagarali, T.G. Langdon: Acta Metall. 29 (1981) 1969.10.1016/0001-6160(81)90034-1Search in Google Scholar

[14] S.S. Vagarali, T.G. Langdon: Acta Metall. 30 (1982) 1157.10.1016/0001-6160(82)90009-8Search in Google Scholar

[15] W. Henning, B.L. Mordike, in: H.J. McQueen (Ed.), Proc. 7th Internat. Conf. on Strength of Metals and Alloys, Pergamon, Oxford, 1985, Vol. 1, p. 803.10.1016/B978-0-08-031642-0.50140-9Search in Google Scholar

[16] H. Karimzadeh, J.M. Worrall, R. Pilkington, G.W. Lorimer, in: Magnesium Technology 86, Inst. of Metals, London, 1987, p. 138.Search in Google Scholar

[17] R.A. Khosrhoshahi, R. Pilkington, G.W. Lorimer, P. Lyon, H. Karimzadeh, in: G.W. Lorimer (Ed.), Proc. 3rd. Internat. Magnesium Conf., Inst. of Materials, London, 1987, p. 241.Search in Google Scholar

[18] M. Regev, E. Aghion, A. Rosen, M. Bamberger: Mater. Sci. Eng A 252 (1998) 6.10.1016/S0921-5093(98)00668-6Search in Google Scholar

[19] J.G.Wang, L.M. Hsiung, T.G. Nieh, M. Mabuchi: Mater. Sci. Eng. A 315 (2001) 81.10.1016/S0921-5093(01)01209-6Search in Google Scholar

[20] I.A. Ananyanwu, S. Kamado, Y. Kojima: Mater. Trans. 42 (2001) 1212.10.2320/matertrans.42.1212Search in Google Scholar

[21] D. Weiss, A.A. Kaya, E. Aghion, D. Eliezer: J. Mater. Sci. 37 (2002) 5371.10.1023/A:1021001813867Search in Google Scholar

[22] M. Suzuki, T. Kimwa, J. Koike, K. Maruyama: Mater. Sci. For. 419–422 (2003) 473.10.4028/www.scientific.net/MSF.419-422.473Search in Google Scholar

[23] B.L. Mordike, I. Stulikova, B. Smola: Met. Mater. Trans. A 36 (2005) 1729.10.1007/s11661-005-0037-zSearch in Google Scholar

[24] B.L. Mordike: Mater. Sci. Eng A 324 (2002) 103.10.1016/S0921-5093(01)01290-4Search in Google Scholar

Received: 2005-07-26
Accepted: 2005-09-25
Published Online: 2022-01-07

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Phase separation in Si–(B)–C–N polymer-derived ceramics
  3. Solidification curves for commercial Mg alloys obtained from heat-transfer modeled DTA experiments
  4. Thermodynamic assessment of the Mg–Nd system
  5. Solid-state reaction in Ni/Si multilayered films, characterized by magneto-optical and optical spectroscopies
  6. Phase diagram of the Co–Cu–Ti system at 850 °C
  7. Effects of an electric field applied during the solution heat treatment of the Al–Mg –Si–Cu alloy AA6111 on the subsequent natural aging kinetics and tensile properties
  8. Fabrication and electrical sliding wear of graphitic Cu–Cr–Zr matrix composites
  9. Further results on creep behaviour of sand-cast Mg–2.8Nd–0.8Zn–0.5Zr–0.3Gd alloy at 0.56 to 0.61Tm under stresses 40 to 90 MPa
  10. On the creep resistance in cast Ni-base superalloys
  11. Formation, stability, and presence of magnesium nitride in magnesium recycling processes
  12. From waste to high strength alloy – recycling of magnesium chips
  13. Sigma phase formation and its effect on mechanical properties in the corrosion-resistant superalloy K44
  14. Personal/Personelles
  15. Press / Presse
  16. Contents
  17. Articles Basic
  18. Phase separation in Si–(B)–C–N polymer-derived ceramics
  19. Solidification curves for commercial Mg alloys obtained from heat-transfer modeled DTA experiments
  20. Thermodynamic assessment of the Mg–Nd system
  21. Solid-state reaction in Ni/Si multilayered films, characterized by magneto-optical and optical spectroscopies
  22. Phase diagram of the Co–Cu–Ti system at 850 °C
  23. Effects of an electric field applied during the solution heat treatment of the Al–Mg –Si–Cu alloy AA6111 on the subsequent natural aging kinetics and tensile properties
  24. Articles Applied
  25. Fabrication and electrical sliding wear of graphitic Cu–Cr–Zr matrix composites
  26. Further results on creep behaviour of sand-cast Mg–2.8Nd–0.8Zn–0.5Zr–0.3Gd alloy at 0.56 to 0.61Tm under stresses 40 to 90 MPa
  27. On the creep resistance in cast Ni-base superalloys
  28. Formation, stability, and presence of magnesium nitride in magnesium recycling processes
  29. From waste to high strength alloy – recycling of magnesium chips
  30. Sigma phase formation and its effect on mechanical properties in the corrosion-resistant superalloy K44
  31. Notifications/Mitteilungen
  32. Personal/Personelles
  33. Press / Presse
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0027/html
Scroll to top button