Home Solidification curves for commercial Mg alloys obtained from heat-transfer modeled DTA experiments
Article
Licensed
Unlicensed Requires Authentication

Solidification curves for commercial Mg alloys obtained from heat-transfer modeled DTA experiments

  • Djordje Mirković and Rainer Schmid-Fetzer EMAIL logo
Published/Copyright: January 7, 2022
Become an author with De Gruyter Brill

Abstract

An improved method is presented for determination of solidification curves, i. e., solid fraction versus temperature, for commercial Mg alloys using heat-transfer modeled differential thermal analysis (DTA) curves. A better simulation of the measured DTA signal is attained through an independent measurement of the time constant as function of temperature for the applied equipment. This enables a better desmearing of the DTA signal. Challenging Mg alloys could be appropriately handled by redesigning the tantalum encapsulation. Due to high oxygen affinity and vapor pressure of the investigated magnesium alloys, this special adaptation of the DTA setup using sealed Ta capsules was indispensable for generation of reproducible and reliable data.


Prof. Dr.-Ing. Rainer Schmid-Fetzer Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld, Germany Tel.: +49 5323 72 21 50 Fax: +49 5323 72 31 20

References

[1] W. Fragner, H. Kaufmann, R. Potzinger, in: K. Kainer (Ed.), Magnesium alloys and their applications VI, Wiley-VCH, Weinheim (2003) 688.10.1002/3527603565.ch109Search in Google Scholar

[2] A. Lohmüller, M. Scharrer, R. Jenning, M. Hilbinger, M. Hartmann, R.F. Singer, in: K. Kainer (Ed.), Magnesium alloys and their applications VI, Wiley-VCH, Weinheim (2003) 738.10.1002/3527603565.ch117Search in Google Scholar

[3] S.C. Jeng, S.W. Chen, C.C. Huang, in: E.W. Lee, N.J. Kim, K.V. Jata, W.E. Frazier (Eds.), Light Weight Alloys for Aerospace Applications III, TMS, Warrendale (1995) 219.Search in Google Scholar

[4] S.W. Chen, C.C. Huang: Acta mater. 44 (1996) 1955.10.1016/1359-6454(95)00313-4Search in Google Scholar

[5] W.J. Boettinger, U.R. Kattner: Metall. Trans. A 33 (2002) 1779. [6] H.B. Dong, J.D. Hunt: J. Therm. Anal. Calorim. 64 (2001) 167.10.1007/s11661-002-0187-1Search in Google Scholar

[6] L. Bäckerud, E. Krol, J. Tamminen: Solidification characteristics of aluminium alloys; Vol. 1: Wrought Alloys, Skan Aluminium, Oslo (1986) 65.Search in Google Scholar

[7] J. Tamminen: Doctoral Dissertation, University of Stockholm, Stockholm (1988).Search in Google Scholar

[8] H. Fedriksson, B. Rogberg: Metal Science 3 (1979) 685.10.1179/030634579790434303Search in Google Scholar

[9] Y.W. Riddle, M.M. Makhlouf, in: H.I. Kaplan (Ed.), Magnesium Technology 2003, TMS, San Diego (2003) 101.Search in Google Scholar

[10] S.C. Jeng, S.W. Chen: Mater. Sci. Forum 217 (1996) 283.10.4028/www.scientific.net/MSF.217-222.283Search in Google Scholar

[11] S.W. Chen, S.C. Jeng: Metall. Trans. A 27 (1996) 2722.10.1007/BF02652366Search in Google Scholar

[12] S.W. Chen, S.C. Jeng: Metall. Trans. A 28 (1997) 503.10.1007/s11661-997-0151-1Search in Google Scholar

[13] S.W. Chen, C.C. Lin, C.M. Chen: Metall. Trans. A 29 (1998) 1965.10.1007/s11661-998-0022-4Search in Google Scholar

[14] D. Mirković, J. Gröbner, R. Schmid-Fetzer, in: K. Kainer (Ed.), Magnesium alloys and their applications VI, Wiley-VCH, Weinheim (2003) 842.10.1002/3527603565.ch131Search in Google Scholar

[15] H.B. Dong, J.D. Hunt: J. Therm. Anal. Calorim. 64 (2001) 341.10.1023/A:1011578205887Search in Google Scholar

[16] H.B. Dong, M.R.M. Shin, E.C. Kurum, H. Cama, J.D. Hunt: Metall. Trans. A 34 (2003) 441.10.1007/s11661-003-0080-6Search in Google Scholar

[17] A.P. Gray, in: R.S. Porter, J.F. Johnson (Eds.), Analytical Calorimetry, Plenum Press, New York (1968) 209.10.1007/978-1-4757-0001-5_27Search in Google Scholar

[18] W. Hemminger, H. Cammenga: Methoden der thermischen Analyse, Springer-Verlag, Berlin, Heidelberg (1989).10.1007/978-3-642-70175-7Search in Google Scholar

[19] M. Kiuchi, S. Sigiyama: Annals of the CIRP 43 (1994) 1.10.1016/S0007-8506(07)62211-2Search in Google Scholar

[20] S.I. Bakhtiyarov, R.A. Overfelt, S.G. Teodorescu: J. Fluid. Eng. 126 (2004) 193.10.1115/1.1677450Search in Google Scholar

[21] D.K. Banerjee, W.J. Boettinger, R.J. Schafer, M.E. Williams, in: M. Cross, J. Campbell (Eds.), Modelling of Casting, Welding and Advanced Solidification Processes VII, TMS, Warrendale (1995) 491.Search in Google Scholar

[22] K.R. Loeblich: Thermochim. Acta 83 (1985) 99.10.1016/0040-6031(85)85797-XSearch in Google Scholar

[23] U. Ulbrich, H.K. Cammenga: Thermochim. Acta 229 (1993) 53.10.1016/0040-6031(93)80314-ZSearch in Google Scholar

[24] K.R. Loeblich: Thermochim. Acta 231 (1994) 7.10.1016/0040-6031(94)80002-2Search in Google Scholar

[25] G.W.H. Höhne, W. Hemminger, H.-J. Flammersheim: Differential scanning calorimetry: An introduction for practitioners, Springer-Verlag, Berlin, Heidelberg (1996).10.1007/978-3-662-03302-9Search in Google Scholar

[26] A. Lindemann, J. Schmidt, M. Todte, T. Zeuner: Thermochim. Acta 382 (2002) 269.10.1016/S0040-6031(01)00752-3Search in Google Scholar

[27] H.G. Wiedemann, A. van Tets: Thermochim. Acta 1 (1970) 159.10.1016/0040-6031(70)85006-7Search in Google Scholar

[28] K.H. Schönborn: Thermochim. Acta 69 (1983) 103.10.1016/0040-6031(83)85069-2Search in Google Scholar

[29] S.W. Chen, C.C. Huang. J.C. Lin: Chem. Eng. Sci. 50 (1995) 417.10.1016/0009-2509(94)00244-LSearch in Google Scholar

[30] R. Schmid-Fetzer, J. Gröbner: Adv. Eng. Mater. 3 (2001) 947.10.1002/1527-2648(200112)3:12<947::AID-ADEM947>3.0.CO;2-PSearch in Google Scholar

[31] S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, W.A. Oates, R. Schmid-Fetzer: J. Phase Equilibria 22 (2001) 373.10.1361/105497101770332910Search in Google Scholar

[32] W. Kurz, D.J. Fisher: Fundamentals of solidification, Trans. Tech. Publ., Aedermannsdorf (1989).Search in Google Scholar

[33] I.G. Chen, D.M. Stefanescu: AFS Transactions 92 (1984) 947.Search in Google Scholar

[34] E. Fras, W. Kapturkiewicz, A. Burbielko, H.F. Lopez: AFS Transactions 101 (1993) 505.Search in Google Scholar

[35] K. Saito, K. Takeda, T. Tsukeda, S. Matsuki: JSW Technical Review 17 (1997) 21.Search in Google Scholar

[36] F.Y. Xie, X.Y. Yan, L. Ding, F. Zhang, S.L. Chen, M.G. Chu, Y.A. Chang: Mater. Sci. Eng. A 355 (2003) 144.10.1016/S0921-5093(03)00056-XSearch in Google Scholar

Received: 2005-06-09
Accepted: 2005-11-15
Published Online: 2022-01-07

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Phase separation in Si–(B)–C–N polymer-derived ceramics
  3. Solidification curves for commercial Mg alloys obtained from heat-transfer modeled DTA experiments
  4. Thermodynamic assessment of the Mg–Nd system
  5. Solid-state reaction in Ni/Si multilayered films, characterized by magneto-optical and optical spectroscopies
  6. Phase diagram of the Co–Cu–Ti system at 850 °C
  7. Effects of an electric field applied during the solution heat treatment of the Al–Mg –Si–Cu alloy AA6111 on the subsequent natural aging kinetics and tensile properties
  8. Fabrication and electrical sliding wear of graphitic Cu–Cr–Zr matrix composites
  9. Further results on creep behaviour of sand-cast Mg–2.8Nd–0.8Zn–0.5Zr–0.3Gd alloy at 0.56 to 0.61Tm under stresses 40 to 90 MPa
  10. On the creep resistance in cast Ni-base superalloys
  11. Formation, stability, and presence of magnesium nitride in magnesium recycling processes
  12. From waste to high strength alloy – recycling of magnesium chips
  13. Sigma phase formation and its effect on mechanical properties in the corrosion-resistant superalloy K44
  14. Personal/Personelles
  15. Press / Presse
  16. Contents
  17. Articles Basic
  18. Phase separation in Si–(B)–C–N polymer-derived ceramics
  19. Solidification curves for commercial Mg alloys obtained from heat-transfer modeled DTA experiments
  20. Thermodynamic assessment of the Mg–Nd system
  21. Solid-state reaction in Ni/Si multilayered films, characterized by magneto-optical and optical spectroscopies
  22. Phase diagram of the Co–Cu–Ti system at 850 °C
  23. Effects of an electric field applied during the solution heat treatment of the Al–Mg –Si–Cu alloy AA6111 on the subsequent natural aging kinetics and tensile properties
  24. Articles Applied
  25. Fabrication and electrical sliding wear of graphitic Cu–Cr–Zr matrix composites
  26. Further results on creep behaviour of sand-cast Mg–2.8Nd–0.8Zn–0.5Zr–0.3Gd alloy at 0.56 to 0.61Tm under stresses 40 to 90 MPa
  27. On the creep resistance in cast Ni-base superalloys
  28. Formation, stability, and presence of magnesium nitride in magnesium recycling processes
  29. From waste to high strength alloy – recycling of magnesium chips
  30. Sigma phase formation and its effect on mechanical properties in the corrosion-resistant superalloy K44
  31. Notifications/Mitteilungen
  32. Personal/Personelles
  33. Press / Presse
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0021/html
Scroll to top button