Home Phase separation in Si–(B)–C–N polymer-derived ceramics
Article
Licensed
Unlicensed Requires Authentication

Phase separation in Si–(B)–C–N polymer-derived ceramics

  • Jerzy A. Golczewski EMAIL logo and Fritz Aldinger
Published/Copyright: January 7, 2022
Become an author with De Gruyter Brill

Abstract

Details of phase separation in the microstructure of amorphous Si – (B) –C–N ceramics derived from polymers have been resolved using the recent results of structural investigations. The formation of an amorphous phase built of atomic compounds SiCi/4N(4 – i)/3 and consequently located along the composition line between SiC and Si3N4 in the ternary Si–C–N phase diagram demonstrates a generic feature of phase separation in all these materials. The amorphous carbon phase separates as a counterpart in the micro-structure of Si –C–N ceramics, and in the case of Si –B– C–N ceramics such counterpart represents B–N–C domains of the composition (BN)cCy located along the tie line C–BN in the ternary B–C–N phase diagram. The effect of phase separation has been also pondered as a source of exceptional material properties.


Dr. Jerzy A. Golczewski MPI für Metallforschung Heisenbergstr. 5, D-70569 Stuttgart Tel.: +49 711 689 3104 Fax: +49 711 689 3131

References

[1] H.-J. Kleebe, H. Strömer, S. Trassl, G. Ziegler: Appl. Organometal. Chem. 15 (2001) 858.10.1002/aoc.243Search in Google Scholar

[2] J. Bill, T.W. Kamphowe, A. Müller, T.Wichmann, A. Zern, A. Jalowiecki, J. Mayer,M.Weinmann, J. Schumacher, K. Müller, J. Peng, H. J. Seifert, F. Aldinger: Appl. Organometal. Chem. 15 (2001) 777.10.1002/aoc.242Search in Google Scholar

[3] M.A. Schiavon, G.D. Sorarù, V.P. Yoshida: J. Non-Crystalline Solids 304 (2002) 76.10.1016/S0022-3093(02)01007-4Search in Google Scholar

[4] N. Janakiraman, M. Weinmann, J. Schumacher, K. Müller, J. Bill, F. Aldinger: J. Am. Ceram. Soc. 85 (2002) 1807.10.1111/j.1151-2916.2002.tb00357.xSearch in Google Scholar

[5] L.L. Snead, S.J. Zinkle: Nucl. Instrum. Methods Phys. Research B 191 (2002) 497.10.1016/S0168-583X(02)00599-2Search in Google Scholar

[6] R. Riedel, M. Seher: J. Eur. Ceram. Soc. 7 (1991) 21.10.1016/0955-2219(91)90049-6Search in Google Scholar

[7] H.J. Seifert, J. Peng, H.L. Lukas, F. Aldinger: J. Alloy and Compounds 320 (2001) 251.10.1016/S0925-8388(00)01478-XSearch in Google Scholar

[8] A. Müller, P. Gerstel, M. Weinmann, J. Bill, Fritz Aldinger: J. Eur. Ceram. Soc. 20 (2000) 2655.10.1016/S0955-2219(00)00131-XSearch in Google Scholar

[9] Y. Iwamoto,W. Vögler, E. Kroke, R. Riedel: J. Am. Ceram. Soc. 84 (2001) 2170.10.1111/j.1151-2916.2001.tb00983.xSearch in Google Scholar

[10] M. Hörz, A. Zern, F. Berger, J. Haug, K. Müller, F. Aldinger, M. Weinmann: J. Eur. Ceram. Soc. 25 (2005) 99.10.1016/j.jeurceramsoc.2004.07.020Search in Google Scholar

[11] Y. Cai, A. Zimmermann, S. Prinz, A. Zern, F. Phillipp, F. Aldinger: Scripta Mater. 45 (2001) 1301.10.1016/S1359-6462(01)01164-2Search in Google Scholar

[12] Y. Cai, A. Zimmermann, A. Bauer, F. Aldinger: Acta Mater. 51 (2003) 2675.10.1016/S1359-6454(03)00077-6Search in Google Scholar

[13] J. Dürr, S. Schemp, P. Lamparter, J. Bill, S. Steeb, F. Aldinger: Solid State Ionics 101 –103 (1997) 1041.10.1016/S0167-2738(97)00166-5Search in Google Scholar

[14] S. Schemp, J. Dürr, P. Lamparter, F. Aldinger: Z. Naturforsch. 53a (1998) 127.10.1515/zna-1998-3-405Search in Google Scholar

[15] J. Dürr, P. Lamparter, J. Bill, S. Steeb, F. Aldinger: J. Non-Crystalline Solids 232–234 (1998) 155.10.1016/S0022-3093(98)00460-8Search in Google Scholar

[16] J. Haug, P. Lamparter, M.Weinmann, F. Aldinger: Chem. Mater. 16 (2004) 72.10.1021/cm031029fSearch in Google Scholar

[17] J. Haug, P. Lamparter, M.Weinmann, F. Aldinger: Chem. Mater. 16 (2004) 83.10.1021/cm031088tSearch in Google Scholar

[18] S. Trassl, H.J. Kleebe, H. Störmer, G. Motz, E. Rössler, G. Ziegler: J. Am. Ceram. Soc. 85 (2002) 1268.10.1111/j.1151-2916.2002.tb00256.xSearch in Google Scholar

[19] S.R. Elliot: Physics of amorphous material, Longman, London and New York (1984) 118.Search in Google Scholar

[20] J. Bill, J. Schumacher, K. Müller, S. Schemp, J. Seitz, J. Dürr, H.P. Lamparter, J. Golczewski, J. Peng, H.J. Seifert, F. Aldinger: Z. Metallkd. 91 (2000) 335.10.1515/ijmr-2000-910416Search in Google Scholar

[21] J. Seitz, J. Bill, N. Egger, F. Aldinger: J. Eur. Ceram. Soc. 16 (1996) 885.10.1016/0955-2219(96)00007-6Search in Google Scholar

[22] C. Gérardin, F. Taulelle, D. Bahloul: J. Mater. Chem. 7 (1997) 117.10.1039/a603181aSearch in Google Scholar

[23] J. Schumacher, M. Weinmann, J. Bill, F. Aldinger, K. Müller: Chem. Mater. 10 (1998) 13.10.1021/cm980719uSearch in Google Scholar

[24] S. Trassl, D. Suttor, G. Motz, E. Rössler, G. Ziegler: J. Eur. Ceram. Soc. 20 (2000) 215.10.1016/S0955-2219(99)00142-9Search in Google Scholar

[25] D. Sauter, M. Weinmann, F. Berger, P. Lamparter, K. Müller, F. Aldinger: Chem. Mater. 14 (2002) 2859.10.1021/cm011081gSearch in Google Scholar

[26] F. Berger, A. Müller, F. Aldinger, K. Müller: Z. Anorg. Allg. Chem. 631 (2005) 355.10.1002/zaac.200400259Search in Google Scholar

[27] J. Peng: Dissertation, University Stuttgart (2002) 123.Search in Google Scholar

[28] J.A. Golczewski, F. Aldinger: J. Non-Crystalline Solids 347 (2004) 204.10.1016/j.jnoncrysol.2004.08.241Search in Google Scholar

Received: 2005-11-14
Accepted: 2005-12-02
Published Online: 2022-01-07

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Phase separation in Si–(B)–C–N polymer-derived ceramics
  3. Solidification curves for commercial Mg alloys obtained from heat-transfer modeled DTA experiments
  4. Thermodynamic assessment of the Mg–Nd system
  5. Solid-state reaction in Ni/Si multilayered films, characterized by magneto-optical and optical spectroscopies
  6. Phase diagram of the Co–Cu–Ti system at 850 °C
  7. Effects of an electric field applied during the solution heat treatment of the Al–Mg –Si–Cu alloy AA6111 on the subsequent natural aging kinetics and tensile properties
  8. Fabrication and electrical sliding wear of graphitic Cu–Cr–Zr matrix composites
  9. Further results on creep behaviour of sand-cast Mg–2.8Nd–0.8Zn–0.5Zr–0.3Gd alloy at 0.56 to 0.61Tm under stresses 40 to 90 MPa
  10. On the creep resistance in cast Ni-base superalloys
  11. Formation, stability, and presence of magnesium nitride in magnesium recycling processes
  12. From waste to high strength alloy – recycling of magnesium chips
  13. Sigma phase formation and its effect on mechanical properties in the corrosion-resistant superalloy K44
  14. Personal/Personelles
  15. Press / Presse
  16. Contents
  17. Articles Basic
  18. Phase separation in Si–(B)–C–N polymer-derived ceramics
  19. Solidification curves for commercial Mg alloys obtained from heat-transfer modeled DTA experiments
  20. Thermodynamic assessment of the Mg–Nd system
  21. Solid-state reaction in Ni/Si multilayered films, characterized by magneto-optical and optical spectroscopies
  22. Phase diagram of the Co–Cu–Ti system at 850 °C
  23. Effects of an electric field applied during the solution heat treatment of the Al–Mg –Si–Cu alloy AA6111 on the subsequent natural aging kinetics and tensile properties
  24. Articles Applied
  25. Fabrication and electrical sliding wear of graphitic Cu–Cr–Zr matrix composites
  26. Further results on creep behaviour of sand-cast Mg–2.8Nd–0.8Zn–0.5Zr–0.3Gd alloy at 0.56 to 0.61Tm under stresses 40 to 90 MPa
  27. On the creep resistance in cast Ni-base superalloys
  28. Formation, stability, and presence of magnesium nitride in magnesium recycling processes
  29. From waste to high strength alloy – recycling of magnesium chips
  30. Sigma phase formation and its effect on mechanical properties in the corrosion-resistant superalloy K44
  31. Notifications/Mitteilungen
  32. Personal/Personelles
  33. Press / Presse
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0020/html
Scroll to top button