Abstract
Mechanical forces exerted to the plasma membrane induce cell shape changes. These transient shape changes trigger, among others, enrichment of curvature-sensitive molecules at deforming membrane sites. Strikingly, some curvature-sensing molecules not only detect membrane deformation but can also alter the amplitude of forces that caused to shape changes in the first place. This dual ability of sensing and inducing membrane deformation leads to the formation of curvature-dependent self-organizing signaling circuits. How these cell-autonomous circuits are affected by auxiliary parameters from inside and outside of the cell has remained largely elusive. Here, we explore how such factors modulate self-organization at the micro-scale and its emerging properties at the macroscale.
Funding source: Interdisziplinäres Zentrum für Klinische Forschung, Universitätsklinikum Münster
Award Identifier / Grant number: IZKF Ga3/016/21
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: CRC1348/A06
Award Identifier / Grant number: CRC944/P22
Award Identifier / Grant number: GA-2268-4/1
Acknowledgments
We would thank the members of the Galic group for critical feedback on the manuscript.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The authors acknowledge funding from the CIM-IMRS graduate school Münster (to A.S.), the Medical Faculty of the University of Münster (to MG: IZKF Ga3/016/21), and the German Research Council (to MG: CRC944/P22, CRC1348/A06, GA-2268-4/1).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abaurrea-Velasco, C., Auth, T., and Gompper, G. (2019). Vesicles with internal active filaments: self-organized propulsion controls shape, motility, and dynamical response. New J. Phys. 21: 123024, https://doi.org/10.1088/1367-2630/ab5c70.Search in Google Scholar
Abe, K., Katsuno, H., Toriyama, M., Baba, K., Mori, T., Hakoshima, T., Kanemura, Y., Watanabe, R., and Inagaki, N. (2018). Grip and slip of L1-CAM on adhesive substrates direct growth cone haptotaxis. Proc. Natl. Acad. Sci. U.S.A. 115: 2764–2769, https://doi.org/10.1073/pnas.1711667115.Search in Google Scholar PubMed PubMed Central
Adibhatla, R.M. and Hatcher, J.F. (2008). Altered lipid metabolism in brain injury and disorders. Sub Cell. Biochem. 49: 241–268.10.1007/978-1-4020-8831-5_9Search in Google Scholar PubMed PubMed Central
Agrawal, H., Zelisko, M., Liu, L., and Sharma, P. (2016). Rigid proteins and softening of biological membranes-with application to HIV-induced cell membrane softening. Sci. Rep. 6: 25412, https://doi.org/10.1038/srep25412.Search in Google Scholar PubMed PubMed Central
Ahmed, S., Goh, W.I., and Bu, W. (2010). I-BAR domains, IRSp53 and filopodium formation. Semin. Cell Dev. Biol. 21: 350–356, https://doi.org/10.1016/j.semcdb.2009.11.008.Search in Google Scholar PubMed
Baralle, F.E. and Giudice, J. (2017). Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18: 437–451, https://doi.org/10.1038/nrm.2017.27.Search in Google Scholar PubMed PubMed Central
Bavi, O., Cox, C.D., Vossoughi, M., Naghdabadi, R., Jamali, Y., and Martinac, B. (2016). Influence of global and local membrane curvature on mechanosensitive ion channels: a finite element approach. Membranes 6: 1–16, https://doi.org/10.3390/membranes6010014.Search in Google Scholar PubMed PubMed Central
Begemann, I., Saha, T., Lamparter, L., Rathmann, I., Grill, D., Golbach, L., Rasch, C., Keller, U., Trappmann, B., Matis, M., et al.. (2019). Mechanochemical self-organization determines search pattern in migratory cells. Nat. Phys. 15: 848–857, https://doi.org/10.1038/s41567-019-0505-9.Search in Google Scholar
Bhatia, V.K., Madsen, K.L., Bolinger, P.Y., Kunding, A., Hedegård, P., Gether, U., and Stamou, D. (2009). Amphipathic motifs in BAR domains are essential for membrane curvature sensing. EMBO J. 28: 3303–3314, https://doi.org/10.1038/emboj.2009.261.Search in Google Scholar PubMed PubMed Central
Blanchoin, L., Boujemaa-Paterski, R., Sykes, C., and Plastino, J. (2014). Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94: 235–263, https://doi.org/10.1152/physrev.00018.2013.Search in Google Scholar PubMed
Busch, D.J., Houser, J.R., Hayden, C.C., Sherman, M.B., Lafer, E.M., and Stachowiak, J.C. (2015). Intrinsically disordered proteins drive membrane curvature. Nat. Commun. 6: 7875, https://doi.org/10.1038/ncomms8875.Search in Google Scholar PubMed PubMed Central
Chavent, M., Karia, D., Kalli, A.C., Domański, J., Duncan, A.L., Hedger, G., Stansfeld, P.J., Seiradake, E., Jones, E.Y., and Sansom, M.S.P. (2018). Interactions of the EphA2 kinase domain with PIPs in membranes: implications for receptor function. Structure 26: 1025–1034.e2, https://doi.org/10.1016/j.str.2018.05.003.Search in Google Scholar PubMed PubMed Central
Chen, Q., Pan, Z., Zhao, M., Wang, Q., Qiao, C., Miao, L., and Ding, X. (2018). High cholesterol in lipid rafts reduces the sensitivity to EGFR-TKI therapy in non-small cell lung cancer. J. Cell. Physiol. 233: 6722–6732, https://doi.org/10.1002/jcp.26351.Search in Google Scholar PubMed
Cheng, Y., LeGall, T., Oldfield, C.J., Dunker, A.K., and Uversky, V.N. (2006). Abundance of intrinsic disorder in protein associated with cardiovascular disease. Biochemistry 45: 10448–10460, https://doi.org/10.1021/bi060981d.Search in Google Scholar PubMed
Clarkson, E., Costa, C.F., and Machesky, L.M. (2004). Congenital myopathies: diseases of the actin cytoskeleton. J. Pathol. 204: 407–417, https://doi.org/10.1002/path.1648.Search in Google Scholar PubMed
Croteau, L.P., Kao, T.J., and Kania, A. (2019). Ephrin-A5 potentiates netrin-1 axon guidance by enhancing Neogenin availability. Sci. Rep. 9: 12009, https://doi.org/10.1038/s41598-019-48519-0.Search in Google Scholar PubMed PubMed Central
Cunningham, F., Allen, J.E., Allen, J., Alvarez-Jarreta, J., Amode, M.R., Armean, I.M., Austine-Orimoloye, O., Azov, A.G., Barnes, I., Bennett, R., et al.. (2022). Ensembl 2022. Nucleic Acids Res. 50: D988–D995, https://doi.org/10.1093/nar/gkab1049.Search in Google Scholar PubMed PubMed Central
D’Alessandro, M., Hnia, K., Gache, V., Koch, C., Gavriilidis, C., Rodriguez, D., Nicot, A.S., Romero, N.B., Schwab, Y., Gomes, E., et al.. (2015). Amphiphysin 2 orchestrates nucleus positioning and shape by linking the nuclear envelope to the actin and microtubule cytoskeleton. Dev. Cell 35: 186–198, https://doi.org/10.1016/j.devcel.2015.09.018.Search in Google Scholar PubMed
Darling, T.K. and Lamb, T.J. (2019). Emerging roles for Eph receptors and ephrin ligands in immunity. Front. Immunol. 10: 1473, https://doi.org/10.3389/fimmu.2019.01473.Search in Google Scholar PubMed PubMed Central
Doolin, M.T., Smith, I.M., and Stroka, K.M. (2021). Fibroblast to myofibroblast transition is enhanced by increased cell density. Mol. Biol. Cell 32: ar41, https://doi.org/10.1091/mbc.e20-08-0536.Search in Google Scholar
Doss, B.L., Pan, M., Gupta, M., Grenci, G., Mège, R.M., Lim, C.T., Sheetz, M.P., Voituriez, R., and Ladoux, B. (2020). Cell response to substrate rigidity is regulated by active and passive cytoskeletal stress. Proc. Natl. Acad. Sci. U.S.A. 117: 12817–12825, https://doi.org/10.1073/pnas.1917555117.Search in Google Scholar PubMed PubMed Central
Dyson, H. and Wright, P.E. (2002). Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12: 54–60, https://doi.org/10.1016/s0959-440x(02)00289-0.Search in Google Scholar PubMed
Elkin, B.S., Azeloglu, E.U., Costa, K.D., and Morrison, B. (2007). Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J. Neurotrauma 24: 812–822, https://doi.org/10.1089/neu.2006.0169.Search in Google Scholar PubMed
Engler, A.J., Sen, S., Sweeney, H.L., and Discher, D.E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126: 677–689, https://doi.org/10.1016/j.cell.2006.06.044.Search in Google Scholar PubMed
Flaugh, S.L., Kosinski-Collins, M.S., and King, J. (2005). Interdomain side-chain interactions in human gammaD crystallin influencing folding and stability. Protein Sci. 14: 2030–2043, https://doi.org/10.1110/ps.051460505.Search in Google Scholar PubMed PubMed Central
Fošnarič, M., Penič, S., Iglič, A., Kralj-Iglič, V., Drab, M., and Gov, N.S. (2019). Theoretical study of vesicle shapes driven by coupling curved proteins and active cytoskeletal forces. Soft Matter 15: 5319–5330, https://doi.org/10.1039/c8sm02356e.Search in Google Scholar PubMed
Frigini, E.N., Barrera, E.E., Pantano, S., and Porasso, R.D. (2020). Role of membrane curvature on the activation/deactivation of Carnitine Palmitoyltransferase 1A: a coarse grain molecular dynamic study. Biochim. Biophys. Acta Biomembr. 1862: 183094, https://doi.org/10.1016/j.bbamem.2019.183094.Search in Google Scholar PubMed
Galic, M., Jeong, S., Tsai, F.C., Joubert, L.M., Wu, Y.I., Hahn, K.M., Cui, Y., and Meyer, T. (2012). External push and internal pull forces recruit curvature-sensing N-BAR domain proteins to the plasma membrane. Nat. Cell Biol. 14: 874–881, https://doi.org/10.1038/ncb2533.Search in Google Scholar PubMed PubMed Central
Galic, M., Tsai, F.C., Collins, S.R., Matis, M., Bandara, S., and Meyer, T. (2014). Dynamic recruitment of the curvature-sensitive protein ArhGAP44 to nanoscale membrane deformations limits exploratory filopodia initiation in neurons. Elife 3: e03116, https://doi.org/10.7554/elife.03116.Search in Google Scholar PubMed PubMed Central
Gavriljuk, K., Scocozza, B., Ghasemalizadeh, F., Seidel, H., Nandan, A.P., Campos-Medina, M., Schmick, M., Koseska, A., and Bastiaens, P.I.H. (2021). A self-organized synthetic morphogenic liposome responds with shape changes to local light cues. Nat. Commun. 12: 1548, https://doi.org/10.1038/s41467-021-21679-2.Search in Google Scholar PubMed PubMed Central
Gov, N.S. and Gopinathan, A. (2006). Dynamics of membranes driven by actin polymerization. Biophys. J. 90: 454–469, https://doi.org/10.1529/biophysj.105.062224.Search in Google Scholar PubMed PubMed Central
Halim, K.B.A., Koldsø, H., and Sansom, M.S.P. (2015). Interactions of the EGFR juxtamembrane domain with PIP2-containing lipid bilayers: insights from multiscale molecular dynamics simulations. Biochim. Biophys. Acta 1850: 1017–1025, https://doi.org/10.1016/j.bbagen.2014.09.006.Search in Google Scholar PubMed PubMed Central
Harayama, T. and Riezman, H. (2018). Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19: 281–296, https://doi.org/10.1038/nrm.2017.138.Search in Google Scholar PubMed
Helfrich, W. (1973). Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C Biosci. 28: 693–703, https://doi.org/10.1515/znc-1973-11-1209.Search in Google Scholar PubMed
Huang, X., Yang, N., Fiore, V.F., Barker, T.H., Sun, Y., Morris, S.W., Ding, Q., Thannickal, V.J., and Zhou, Y. (2012). Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am. J. Respir. Cell Mol. Biol. 47: 340–348, https://doi.org/10.1165/rcmb.2012-0050oc.Search in Google Scholar PubMed PubMed Central
Hui, K.L., Balagopalan, L., Samelson, L.E., and Upadhyaya, A. (2015). Cytoskeletal forces during signaling activation in Jurkat T-cells. Mol. Biol. Cell 26: 685–695, https://doi.org/10.1091/mbc.e14-03-0830.Search in Google Scholar PubMed PubMed Central
Iakoucheva, L.M., Brown, C.J., Lawson, J., Obradović, Z., and Dunker, A. (2002). Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Mol. Biol. 323: 573–584, https://doi.org/10.1016/s0022-2836(02)00969-5.Search in Google Scholar PubMed
Jarsch, I.K., Daste, F., and Gallop, J.L. (2016). Membrane curvature in cell biology: an integration of molecular mechanisms. J. Cell Biol. 214: 375–387, https://doi.org/10.1083/jcb.201604003.Search in Google Scholar PubMed PubMed Central
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596: 583–589, https://doi.org/10.1038/s41586-021-03819-2.Search in Google Scholar PubMed PubMed Central
Kania, A. and Klein, R. (2016). Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat. Rev. Mol. Cell Biol. 17: 240–256, https://doi.org/10.1038/nrm.2015.16.Search in Google Scholar PubMed
Karsenti, E. (2008). Self-organization in cell biology: a brief history. Nat. Rev. Mol. Cell Biol. 9: 255–262, https://doi.org/10.1038/nrm2357.Search in Google Scholar PubMed
Käs, J. and Sackmann, E. (1991). Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes. Biophys. J. 60: 825–844, https://doi.org/10.1016/s0006-3495(91)82117-8.Search in Google Scholar PubMed PubMed Central
Kast, D.J., Yang, C., Disanza, A., Boczkowska, M., Madasu, Y., Scita, G., Svitkina, T., and Dominguez, R. (2014). Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors. Nat. Struct. Mol. Biol. 21: 413–422, https://doi.org/10.1038/nsmb.2781.Search in Google Scholar PubMed PubMed Central
Kelkar, M., Bohec, P., and Charras, G. (2020). Mechanics of the cellular actin cortex: from signalling to shape change. Curr. Opin. Cell Biol. 66: 69–78, https://doi.org/10.1016/j.ceb.2020.05.008.Search in Google Scholar PubMed
Kluge, C., Pöhnl, M., and Böckmann, R.A. (2022). Spontaneous local membrane curvature induced by transmembrane proteins. Biophys. J. 121: 671–683, https://doi.org/10.1016/j.bpj.2022.01.029.Search in Google Scholar PubMed PubMed Central
Lacovich, V., Espindola, S.L., Alloatti, M., Devoto, V.P., Cromberg, L.E., Čarná, M.E., Forte, G., Gallo, J.M., Bruno, L., Stokin, G.B., et al.. (2017). Tau isoforms imbalance impairs the axonal transport of the amyloid precursor protein in human neurons. J. Neurosci. 37: 58–69, https://doi.org/10.1523/jneurosci.2305-16.2016.Search in Google Scholar PubMed PubMed Central
Lamparter, L. and Galic, M. (2020). Cellular membranes, a versatile adaptive composite material. Front. Cell Dev. Biol. 8: 684, https://doi.org/10.3389/fcell.2020.00684.Search in Google Scholar PubMed PubMed Central
Leibler, S. (1986). Curvature instability in membranes. J. Phys. 47: 507–516, https://doi.org/10.1051/jphys:01986004703050700.10.1051/jphys:01986004703050700Search in Google Scholar
Lemmon, M.A. and Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell 141: 1117–1134, https://doi.org/10.1016/j.cell.2010.06.011.Search in Google Scholar PubMed PubMed Central
Li, Y. and Wolde, P.R.ten (2019). Shape transformations of vesicles induced by swim pressure. Phys. Rev. Lett. 123: 148003, https://doi.org/10.1103/physrevlett.123.148003.Search in Google Scholar PubMed
Liu, A.P., Richmond, D.L., Maibaum, L., Pronk, S., Geissler, P.L., and Fletcher, D.A. (2008). Membrane-induced bundling of actin filaments. Nat. Phys. 4: 789–793, https://doi.org/10.1038/nphys1071.Search in Google Scholar PubMed PubMed Central
Mancinelli, G., Lamparter, L., Nosov, G., Saha, T., Pawluchin, A., Kurre, R., Rasch, C., Ebrahimkutty, M., Klingauf, J., and Galic, M. (2021). Dendrite tapering actuates a self-organizing signaling circuit for stochastic filopodia initiation in neurons. Proc. Natl. Acad. Sci. U.S.A. 118: 1–9, https://doi.org/10.1073/pnas.2106921118.Search in Google Scholar PubMed PubMed Central
Martinac, B., Bavi, N., Ridone, P., Nikolaev, Y.A., Martinac, A.D., Nakayama, Y., Rohde, P.R., and Bavi, O. (2018). Tuning ion channel mechanosensitivity by asymmetry of the transbilayer pressure profile. Biophys. Rev. 10: 1377–1384, https://doi.org/10.1007/s12551-018-0450-3.Search in Google Scholar PubMed PubMed Central
Maxfield, F.R. and Tabas, I. (2005). Role of cholesterol and lipid organization in disease. Nature 438: 612–621, https://doi.org/10.1038/nature04399.Search in Google Scholar PubMed
McMahon, H.T. and Boucrot, E. (2015). Membrane curvature at a glance. J. Cell Sci. 128: 1065–1070, https://doi.org/10.1242/jcs.114454.Search in Google Scholar PubMed PubMed Central
Mills, J.P., Diez-Silva, M., Quinn, D.J., Dao, M., Lang, M.J., Tan, K.S.W., Lim, C.T., Milon, G., David, P.H., Mercereau-Puijalon, O., et al.. (2007). Effect of plasmodial RESA protein on deformability of human red blood cells harboring plasmodium falciparum. Proc. Natl. Acad. Sci. U.S.A. 104: 9213–9217, https://doi.org/10.1073/pnas.0703433104.Search in Google Scholar PubMed PubMed Central
Mori, H., Takahashi, A., Horimoto, A., and Hara, M. (2013). Migration of glial cells differentiated from neurosphere-forming neural stem/progenitor cells depends on the stiffness of the chemically cross-linked collagen gel substrate. Neurosci. Lett. 555: 1–6, https://doi.org/10.1016/j.neulet.2013.09.012.Search in Google Scholar PubMed
Nicot, A.S., Toussaint, A., Tosch, V., Kretz, C., Wallgren-Pettersson, C., Iwarsson, E., Kingston, H., Garnier, J.M., Biancalana, V., Oldfors, A., et al.. (2007). Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat. Genet. 39: 1134–1139, https://doi.org/10.1038/ng2086.Search in Google Scholar PubMed
Niederman, R. and Pollard, T.D. (1975). Human platelet myosin. II. In vitro assembly and structure of myosin filaments. J. Cell Biol. 67: 72–92, https://doi.org/10.1083/jcb.67.1.72.Search in Google Scholar PubMed PubMed Central
Noguchi, H. (2016a). Membrane tubule formation by banana-shaped proteins with or without transient network structure. Sci. Rep. 6: 20935, https://doi.org/10.1038/srep20935.Search in Google Scholar PubMed PubMed Central
Noguchi, H. (2016b). Shape deformation of lipid membranes by banana-shaped protein rods: comparison with isotropic inclusions and membrane rupture. Phys. Rev. E 93: 52404, https://doi.org/10.1103/physreve.93.052404.Search in Google Scholar
Noguchi, H. (2017). Acceleration and suppression of banana-shaped-protein-induced tubulation by addition of small membrane inclusions of isotropic spontaneous curvatures. Soft Matter 13: 7771–7779, https://doi.org/10.1039/c7sm01375b.Search in Google Scholar PubMed
Noguchi, H. and Fournier, J.B. (2017). Membrane structure formation induced by two types of banana-shaped proteins. Soft Matter 13: 4099–4111, https://doi.org/10.1039/c7sm00305f.Search in Google Scholar PubMed
Nucifora, F.C., Sasaki, M., Peters, M.F., Huang, H., Cooper, J.K., Yamada, M., Takahashi, H., Tsuji, S., Troncoso, J., Dawson, V.L., et al.. (2001). Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291: 2423–2428, https://doi.org/10.1126/science.1056784.Search in Google Scholar PubMed
Oldfield, C.J., Cheng, Y., Cortese, M.S., Romero, P., Uversky, V.N., and Dunker, A.K. (2005). Coupled folding and binding with α-helix-forming molecular recognition elements. Biochemistry 44: 12454–12470, https://doi.org/10.1021/bi050736e.Search in Google Scholar PubMed
Paoluzzi, M., Leonardo, R.D., Marchetti, M.C., and Angelani, L. (2016). Shape and displacement fluctuations in soft vesicles filled by active particles. Sci. Rep. 6: 1–10, https://doi.org/10.1038/srep34146.Search in Google Scholar PubMed PubMed Central
Papp, H., Czifra, G., Bodó, E., Lázár, J., Kovács, I., Aleksza, M., Juhász, I., Acs, P., Sipka, S., Kovács, L., et al.. (2004). Opposite roles of protein kinase C isoforms in proliferation, differentiation, apoptosis, and tumorigenicity of human HaCaT keratinocytes. Cell. Mol. Life Sci. 61: 1095–1105, https://doi.org/10.1007/s00018-004-4014-2.Search in Google Scholar PubMed
Parker, F., Baboolal, T.G., and Peckham, M. (2020). Actin mutations and their role in disease. Int. J. Mol. Sci. 21: 1–16, https://doi.org/10.3390/ijms21093371.Search in Google Scholar PubMed PubMed Central
Parthasarathy, R. and Groves, J.T. (2006). Curvature and spatial organization in biological membranes. Soft Matter 3: 24–33, https://doi.org/10.1039/b608631d.Search in Google Scholar PubMed
Peskin, C.S., Odell, G.M., and Oster, G.F. (1993). Cellular motions and thermal fluctuations: the brownian ratchet. Biophys. J. 65: 316–324, https://doi.org/10.1016/s0006-3495(93)81035-x.Search in Google Scholar
Peter, B.J., Kent, H.M., Mills, I.G., Vallis, Y., Butler, P.J.G., Evans, P.R., and McMahon, H.T. (2004). BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303: 495–499, https://doi.org/10.1126/science.1092586.Search in Google Scholar PubMed
Prévost, C., Zhao, H., Manzi, J., Lemichez, E., Lappalainen, P., Callan-Jones, A., and Bassereau, P. (2015). IRSp53 senses negative membrane curvature and phase separates along membrane tubules. Nat. Commun. 6: 8529, https://doi.org/10.1038/ncomms9529.Search in Google Scholar PubMed PubMed Central
Qasba, P.K., Ramakrishnan, B., and Boeggeman, E. (2008). Structure and function of beta -1, 4-galactosyltransferase. Curr. Drug Targets 9: 292–309, https://doi.org/10.2174/138945008783954943.Search in Google Scholar PubMed PubMed Central
Ramaswamy, S., Toner, J., and Prost, J. (2000). Nonequilibrium fluctuations, traveling waves, and instabilities in active membranes. Phys. Rev. Lett. 84: 3494–3497, https://doi.org/10.1103/physrevlett.84.3494.Search in Google Scholar
Saha, T. and Galic, M. (2018). Self-organization across scales: from molecules to organisms. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373: 1–9, https://doi.org/10.1098/rstb.2017.0113.Search in Google Scholar PubMed PubMed Central
Salzer, U., Kostan, J., and Djinović-Carugo, K. (2017). Deciphering the BAR code of membrane modulators. Cell. Mol. Life Sci. 74: 2413–2438, https://doi.org/10.1007/s00018-017-2478-0.Search in Google Scholar PubMed PubMed Central
Santiago, I. and Simmel, F.C. (2019). Self-propulsion strategies for artificial cell-like compartments. Nanomaterials 9: 1–14, https://doi.org/10.3390/nano9121680.Search in Google Scholar PubMed PubMed Central
Santos, T.E., Schaffran, B., Broguière, N., Meyn, L., Zenobi-Wong, M., and Bradke, F. (2020). Axon growth of CNS neurons in three dimensions is amoeboid and independent of adhesions. Cell Rep. 32: 107907, https://doi.org/10.1016/j.celrep.2020.107907.Search in Google Scholar PubMed
Schweisguth, F. and Corson, F. (2019). Self-organization in pattern formation. Dev. Cell 49: 659–677, https://doi.org/10.1016/j.devcel.2019.05.019.Search in Google Scholar PubMed
Shlomovitz, R. and Gov, N.S. (2007). Membrane waves driven by actin and myosin. Phys. Rev. Lett. 98: 168103, https://doi.org/10.1103/physrevlett.98.168103.Search in Google Scholar PubMed
Simon, C., Kusters, R., Caorsi, V., Allard, A., Abou-Ghali, M., Manzi, J., Cicco, A.D., Lévy, D., Lenz, M., Joanny, J.F., et al.. (2019). Actin dynamics drive cell-like membrane deformation. Nat. Phys. 15: 602–609, https://doi.org/10.1038/s41567-019-0464-1.Search in Google Scholar
Simunovic, M., Evergren, E., Golushko, I., Prévost, C., Renard, H.F., Johannes, L., McMahon, H.T., Lorman, V., Voth, G.A., and Bassereau, P. (2016). How curvature-generating proteins build scaffolds on membrane nanotubes. Proc. Natl. Acad. Sci. U.S.A. 113: 11226–11231, https://doi.org/10.1073/pnas.1606943113.Search in Google Scholar PubMed PubMed Central
Snead, W.T., Hayden, C.C., Gadok, A.K., Zhao, C., Lafer, E.M., Rangamani, P., and Stachowiak, J.C. (2017). Membrane fission by protein crowding. Proc. Natl. Acad. Sci. U.S.A. 114: E3258–E3267, https://doi.org/10.1073/pnas.1616199114.Search in Google Scholar PubMed PubMed Central
Spector, A.A. and Yorek, M.A. (1985). Membrane lipid composition and cellular function. J. Lipid Res. 26: 1015–1035, https://doi.org/10.1016/s0022-2275(20)34276-0.Search in Google Scholar
Stefanski, K.M., Russell, C.M., Westerfield, J.M., Lamichhane, R., and Barrera, F.N. (2021). PIP2 promotes conformation-specific dimerization of the EphA2 membrane region. J. Biol. Chem. 296: 100149, https://doi.org/10.1074/jbc.ra120.016423.Search in Google Scholar
Stock, J. and Pauli, A. (2021). Self-organized cell migration across scales - from single cell movement to tissue formation. Development 148: 1–13, https://doi.org/10.1242/dev.191767.Search in Google Scholar PubMed
Su, C.H. and Tarn, W.Y. (2018). Alternative splicing in neurogenesis and brain development. Front. Mol. Biosci. 5: 12, https://doi.org/10.3389/fmolb.2018.00012.Search in Google Scholar PubMed PubMed Central
Tamemoto, N. and Noguchi, H. (2021). Reaction-diffusion waves coupled with membrane curvature. Soft Matter 17: 6589–6596, https://doi.org/10.1039/d1sm00540e.Search in Google Scholar PubMed
Tan, X., Sun, Y., Thapa, N., Liao, Y., Hedman, A.C., and Anderson, R.A. (2015). LAPTM4B is a PtdIns(4, 5)P2 effector that regulates EGFR signaling, lysosomal sorting, and degradation. EMBO J. 34: 475–490, https://doi.org/10.15252/embj.201489425.Search in Google Scholar PubMed PubMed Central
Thelen, K., Kedar, V., Panicker, A.K., Schmid, R.S., Midkiff, B.R., and Maness, P.F. (2002). The neural cell adhesion molecule L1 potentiates integrin-dependent cell migration to extracellular matrix proteins. J. Neurosci. 22: 4918–4931, https://doi.org/10.1523/jneurosci.22-12-04918.2002.Search in Google Scholar
Tian, W.D., Gu, Y., Guo, Y.K., and Chen, K. (2017). Anomalous boundary deformation induced by enclosed active particles. Chin. Phys. B 26: 100502, https://doi.org/10.1088/1674-1056/26/10/100502.Search in Google Scholar
Tompa, P. (2005). The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett. 579: 3346–3354, https://doi.org/10.1016/j.febslet.2005.03.072.Search in Google Scholar PubMed
Vutukuri, H.R., Hoore, M., Abaurrea-Velasco, C., van Buren, L., Dutto, A., Auth, T., Fedosov, D.A., Gompper, G., and Vermant, J. (2020). Active particles induce large shape deformations in giant lipid vesicles. Nature 586: 52–56, https://doi.org/10.1038/s41586-020-2730-x.Search in Google Scholar PubMed
Wakatsuki, T., Kolodney, M.S., Zahalak, G.I., and Elson, E.L. (2000). Cell mechanics studied by a reconstituted model tissue. Biophys. J. 79: 2353–2368, https://doi.org/10.1016/s0006-3495(00)76481-2.Search in Google Scholar PubMed PubMed Central
Welf, E.S., Miles, C.E., Huh, J., Sapoznik, E., Chi, J., Driscoll, M.K., Isogai, T., Noh, J., Weems, A.D., Pohlkamp, T., et al.. (2020). Actin-membrane release initiates cell protrusions. Dev. Cell 55: 723–736.e8, https://doi.org/10.1016/j.devcel.2020.11.024.Search in Google Scholar PubMed PubMed Central
Wu, Z., Su, M., Tong, C., Wu, M., and Liu, J. (2018). Membrane shape-mediated wave propagation of cortical protein dynamics. Nat. Commun. 9: 136, https://doi.org/10.1038/s41467-017-02469-1.Search in Google Scholar PubMed PubMed Central
Xu, N.J. and Henkemeyer, M. (2012). Ephrin reverse signaling in axon guidance and synaptogenesis. Semin. Cell Dev. Biol. 23: 58–64, https://doi.org/10.1016/j.semcdb.2011.10.024.Search in Google Scholar PubMed PubMed Central
Xue, B., Brown, C.J., Dunker, A.K., and Uversky, V.N. (2013). Intrinsically disordered regions of p53 family are highly diversified in evolution. Biochim. Biophys. Acta 1834: 725–738, https://doi.org/10.1016/j.bbapap.2013.01.012.Search in Google Scholar PubMed PubMed Central
Yang, S., Miao, X., Arnold, S., Li, B., Ly, A.T., Wang, H., Wang, M., Guo, X., Pathak, M.M., Zhao, W., et al.. (2022). Membrane curvature governs the distribution of Piezo1 in live cells. Nat. Commun. 13: 1–14.10.1038/s41467-022-35034-6Search in Google Scholar PubMed PubMed Central
Yeung, T., Georges, P.C., Flanagan, L.A., Marg, B., Ortiz, M., Funaki, M., Zahir, N., Ming, W., Weaver, V., and Janmey, P.A. (2005). Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60: 24–34, https://doi.org/10.1002/cm.20041.Search in Google Scholar PubMed
Zeno, W.F., Snead, W.T., Thatte, A.S., and Stachowiak, J.C. (2019). Structured and intrinsically disordered domains within Amphiphysin1 work together to sense and drive membrane curvature. Soft Matter 15: 8706–8717, https://doi.org/10.1039/c9sm01495k.Search in Google Scholar PubMed PubMed Central
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Highlight: Physiology and Dynamics of Cellular Microcompartments
- Highlight: on the past and the future of cellular microcompartments
- Nuclear redox processes in land plant development and stress adaptation
- The readily retrievable pool of synaptic vesicles
- Loss of respiratory complex I subunit NDUFB10 affects complex I assembly and supercomplex formation
- Modulation of self-organizing circuits at deforming membranes by intracellular and extracellular factors
- Computational resolution in single molecule localization – impact of noise level and emitter density
- Setting up a data management infrastructure for bioimaging
- Molecular insights into endolysosomal microcompartment formation and maintenance
- The role of lysosomes in lipid homeostasis
- Membrane damage and repair: a thin line between life and death
- Neuronal stress granules as dynamic microcompartments: current concepts and open questions
- Molecular determinants of protein half-life in chloroplasts with focus on the Clp protease system
- Neprilysin 4: an essential peptidase with multifaceted physiological relevance
- Determinants of synergistic cell-cell interactions in bacteria
- Drosophila collagens in specialised extracellular matrices
Articles in the same Issue
- Frontmatter
- Highlight: Physiology and Dynamics of Cellular Microcompartments
- Highlight: on the past and the future of cellular microcompartments
- Nuclear redox processes in land plant development and stress adaptation
- The readily retrievable pool of synaptic vesicles
- Loss of respiratory complex I subunit NDUFB10 affects complex I assembly and supercomplex formation
- Modulation of self-organizing circuits at deforming membranes by intracellular and extracellular factors
- Computational resolution in single molecule localization – impact of noise level and emitter density
- Setting up a data management infrastructure for bioimaging
- Molecular insights into endolysosomal microcompartment formation and maintenance
- The role of lysosomes in lipid homeostasis
- Membrane damage and repair: a thin line between life and death
- Neuronal stress granules as dynamic microcompartments: current concepts and open questions
- Molecular determinants of protein half-life in chloroplasts with focus on the Clp protease system
- Neprilysin 4: an essential peptidase with multifaceted physiological relevance
- Determinants of synergistic cell-cell interactions in bacteria
- Drosophila collagens in specialised extracellular matrices