Abstract
Histone deacetylase 8 (HDAC8) is an established and validated target for T-cell lymphoma and childhood neuroblastoma. The active site binding pocket of HDAC8 is highly conserved among all zinc-containing representatives of the histone deacetylase (HDAC) family. This explains that most HDACs are unselectively recognized by similar inhibitors featuring a zinc binding group (ZBG), a hydrophobic linker and a head group. In the light of this difficulty, the creation of isoenzyme-selectivity is one of the major challenges in the development of HDAC inhibitors. In a series of trifluoromethylketone inhibitors of HDAC8 compound 10 shows a distinct binding mechanism and a dramatically increased residence time (RT) providing kinetic selectivity against HDAC4. Combining the binding kinetics results with computational docking and binding site flexibility analysis suggests that 10 occupies the conserved catalytic site as well as an adjacent transient sub-pocket of HDAC8.
References
Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans Automatic Control 19, 716–723.10.1007/978-1-4612-1694-0_16Suche in Google Scholar
Balasubramanian, S., Ramos, J., Luo, W., Sirisawad, M., Verner, E., and Buggy, J. J. (2008). A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 22, 1026–1034.10.1038/leu.2008.9Suche in Google Scholar PubMed
Bradshaw, J.M., McFarland, J.M., Paavilainen, V.O., Bisconte, A., Tam, D., Phan, V.T., Romanov, S., Finkle, D., Shu, J., Patel, V., et al. (2015). Prolonged and tunable residence time using reversible covalent kinase inhibitors. Nat. Chem. Biol. 11, 525–531.10.1038/nchembio.1817Suche in Google Scholar PubMed PubMed Central
Copeland, R.A., Pompliano, D.L., and Meek, T.D. (2006). Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discov. 5, 730–739.10.1038/nrd2082Suche in Google Scholar PubMed
Corbeil, C. R., Williams, C. I. and Labute, P. (2012). Variability in docking success rates due to dataset preparation. J. Comput. Aided. Mol. Des. 26, 775–786.10.1007/s10822-012-9570-1Suche in Google Scholar PubMed PubMed Central
Decroos, C., Clausen, D.J., Haines, B.E., Wiest, O., Williams, R.M., and Christianson, D.W. (2015). Variable active site loop conformations accommodate the binding of macrocyclic largazole analogues to HDAC8. Biochemistry 54, 2126–2135.10.1021/acs.biochem.5b00010Suche in Google Scholar PubMed PubMed Central
Deschamps, N., Simões-Pires, C.A., Carrupt, P.-A., and Nurisso, A. (2015). How the flexibility of human histone deacetylases influences ligand binding: an overview. Drug Discov. Today 20, 736–742.10.1016/j.drudis.2015.01.004Suche in Google Scholar PubMed
Dowling, D.P., Gantt, S.L., Gattis, S.G., Fierke, C.A., and Christianson, D.W. (2008). Structural studies of human histone deacetylase 8 and its site-specific variants complexed with substrate and inhibitors. Biochemistry 47, 13554–13563.10.1021/bi801610cSuche in Google Scholar PubMed PubMed Central
Fenichel, M.P. (2015). FDA approves new agent for multiple myeloma. J. Natl. Cancer Inst. 107, djv165. doi: 10.1093/jnci/djv165.10.1093/jnci/djv165Suche in Google Scholar PubMed
Finnin, M.S., Donigian, J.R., Cohen, A., Richon, V.M., Rifkind, R.A., Marks, P.A., Breslow, R., and Pavletich, N.P. (1999). Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401, 188–193.10.1038/43710Suche in Google Scholar PubMed
Frey, R.R., Wada, C.K., Garland, R.B., Curtin, M.L., Michealides, M.R., Li, J., Pease, L.J., Glaser, K.B., Marcotte, P.A., Bouska, J.J., et al. (2002). Trifluoromethyl ketones as inhibitors of histone deacetylase. Bioorg. Med. Chem. Lett. 12, 3443–3447.10.1016/S0960-894X(02)00754-0Suche in Google Scholar PubMed
Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., and Kummer, U. (2006). COPASI – a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074.10.1093/bioinformatics/btl485Suche in Google Scholar PubMed
Huang, W.J., Wang, Y.C., Chao, S.W., Yang, C.Y., Chen, L.C., Lin, M.H., Hou, W.C., Chen, M.Y., Lee, T.L., Yang, P., et al. (2012). Synthesis and biological evaluation of ortho-aryl N-hydroxycinnamides as potent histone deacetylase (HDAC) 8 isoform-selective inhibitors. Chem. Med. Chem. 7, 1815–1824.10.1002/cmdc.201200300Suche in Google Scholar PubMed
Jänsch, N., Meyners, C., Muth, M., Kopranovic, A., Witt, O., Oehme, I., and Meyer-Almes, F.-J. (2019). The enzyme activity of histone deacetylase 8 is modulated by a redox-switch. Redox Biol. 20, 60–67.10.1016/j.redox.2018.09.013Suche in Google Scholar PubMed PubMed Central
Kleinschek, A., Meyners, C., Digiorgio, E., Brancolini, C., and Meyer-Almes, F.J. (2016). Potent and selective non-hydroxamate histone deacetylase 8 inhibitors. Chem. Med. Chem. 11, 2598–2606.10.1002/cmdc.201600528Suche in Google Scholar PubMed
Kokh, D.B., Czodrowski, P., Rippmann, F., and Wade, R.C. (2016). Perturbation approaches for exploring protein binding site flexibility to predict transient binding pockets. J. Chem. Theory Comput. 12, 4100–4113.10.1021/acs.jctc.6b00101Suche in Google Scholar PubMed
Koshland Jr, D. (1958). Application of a theory of enzyme specificity to protein synthesis. Proc. Nat. Acad. Sci. USA 44, 98.10.1073/pnas.44.2.98Suche in Google Scholar PubMed PubMed Central
KrennHrubec, K., Marshall, B.L., Hedglin, M., Verdin, E., and Ulrich, S.M. (2007). Design and evaluation of ‘Linkerless’ hydroxamic acids as selective HDAC8 inhibitors. Bioorg. Med. Chem. Lett. 17, 2874–2878.10.1016/j.bmcl.2007.02.064Suche in Google Scholar PubMed
Kunze, M.B., Wright, D.W., Werbeck, N.D., Kirkpatrick, J., Coveney, P.V., and Hansen, D.F. (2013). Loop interactions and dynamics tune the enzymatic activity of the human histone deacetylase 8. J. Am. Chem. Soc. 135, 17862–17868.10.1021/ja408184xSuche in Google Scholar PubMed PubMed Central
Lee, H.Z., Kwitkowski, V.E., Del Valle, P.L., Ricci, M.S., Saber, H., Habtemariam, B.A., Bullock, J., Bloomquist, E., Li Shen, Y., Chen, X.H., et al. (2015). FDA approval: Belinostat for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma. Clin. Cancer. Res. 21, 2666–2670.10.1158/1078-0432.CCR-14-3119Suche in Google Scholar PubMed
Lu, H. and Tonge, P.J. (2010). Drug-target residence time: critical information for lead optimization. Curr. Opin. Chem. Biol. 14, 467–474.10.1016/j.cbpa.2010.06.176Suche in Google Scholar PubMed PubMed Central
Ma, B., Kumar, S., Tsai, C.-J., and Nussinov, R. (1999). Folding funnels and binding mechanisms. Prot. Eng. 12, 713–720.10.1093/protein/12.9.713Suche in Google Scholar PubMed
Madsen, A.S., Kristensen, H.M.E., Lanz, G., and Olsen, C.A. (2014). The effect of various zinc binding groups on inhibition of histone deacetylases 1-11. ChemMedChem. 9, 614–626.10.1002/cmdc.201300433Suche in Google Scholar PubMed
Mann, B.S., Johnson, J.R., Cohen, M.H., Justice, R., and Pazdur, R. (2007). FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12, 1247–1252.10.1634/theoncologist.12-10-1247Suche in Google Scholar PubMed
Meyer-Almes, F.J. (2016). Discrimination between conformational selection and induced fit protein-ligand binding using integrated global fit analysis. Eur. Biophys. J. 45, 245–257.10.1007/s00249-015-1090-1Suche in Google Scholar PubMed
Meyners, C., Baud, M.G., Fuchter, M.J., and Meyer-Almes, F.J. (2014a). Kinetic method for the large-scale analysis of the binding mechanism of histone deacetylase inhibitors. Anal. Biochem. 460, 39–46.10.1016/j.ab.2014.05.014Suche in Google Scholar PubMed
Meyners, C., Wawrzinek, R., Kramer, A., Hinz, S., Wessig, P., and Meyer-Almes, F.J. (2014b). A fluorescence lifetime-based binding assay for acetylpolyamine amidohydrolases from Pseudomonas aeruginosa using a [1,3]dioxolo[4,5-f][1,3]benzodioxole (DBD) ligand probe. Anal. Bioanal. Chem. 406, 4889–4897.10.1007/s00216-014-7886-5Suche in Google Scholar PubMed
Meyners, C., Mertens, M., Wessig, P., and Meyer-Almes, F.J. (2017). A fluorescence-lifetime-based binding assay for class IIa histone deacetylases. Chemistry 23, 3107–3116.10.1002/chem.201605140Suche in Google Scholar PubMed
Niegisch, G., Knievel, J., Koch, A., Hader, C., Fischer, U., Albers, P., and Schulz, W.A. (2013). Changes in histone deacetylase (HDAC) expression patterns and activity of HDAC inhibitors in urothelial cancers. Urol. Oncol. 31, 1770–1779.10.1016/j.urolonc.2012.06.015Suche in Google Scholar PubMed
Oehme, I., Deubzer, H.E., Wegener, D., Pickert, D., Linke, J.P., Hero, B., Kopp-Schneider, A., Westermann, F., Ulrich, S.M., von Deimling, A., et al. (2009). Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin. Cancer. Res. 15, 91–99.10.1158/1078-0432.CCR-08-0684Suche in Google Scholar PubMed
Park, S.Y., Jun, J.A., Jeong, K.J., Heo, H.J., Sohn, J.S., Lee, H.Y., Park, C.G., and Kang, J. (2011). Histone deacetylases 1, 6 and 8 are critical for invasion in breast cancer. Oncol. Rep. 25, 1677–1681.10.3892/or.2011.1236Suche in Google Scholar PubMed
Seeliger, D., Haas, J., and de Groot, B.L. (2007). Geometry-based sampling of conformational transitions in proteins. Structure 15, 1482–1492.10.1016/j.str.2007.09.017Suche in Google Scholar PubMed
Singh, J., Petter, R.C., Baillie, T.A., and Whitty, A. (2011). The resurgence of covalent drugs. Nat. Rev. Drug Discov. 10, 307–317.10.1038/nrd3410Suche in Google Scholar PubMed
Somoza, J.R., Skene, R.J., Katz, B.A., Mol, C., Ho, J.D., Jennings, A.J., Luong, C., Arvai, A., Buggy, J.J., Chi, E., et al. (2004). Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 12, 1325–1334.10.1016/j.str.2004.04.012Suche in Google Scholar PubMed
Stank, A., Kokh, D.B., Horn, M., Sizikova, E., Neil, R., Panecka, J., Richter, S., and Wade, R.C. (2017). TRAPP webserver: predicting protein binding site flexibility and detecting transient binding pockets. Nucleic Acids Res. 45, W325–W330.10.1093/nar/gkx277Suche in Google Scholar PubMed PubMed Central
Suzuki, T., Ota, Y., Ri, M., Bando, M., Gotoh, A., Itoh, Y., Tsumoto, H., Tatum, P.R., Mizukami, T., Nakagawa, H., et al. (2012). Rapid discovery of highly potent and selective inhibitors of histone deacetylase 8 using click chemistry to generate candidate libraries. J. Med. Chem. 55, 9562–9575.10.1021/jm300837ySuche in Google Scholar PubMed
Tummino, P.J. and Copeland, R.A. (2008). Residence time of receptor – Ligand complexes and its effect on biological function. Biochemistry 47, 5481–5492.10.1021/bi8002023Suche in Google Scholar PubMed
Volund, A. (1978). Application of the four-parameter logistic model to bioassay: comparison with slope ratio and parallel line models. Biometrics 34, 357–365.10.2307/2530598Suche in Google Scholar
Wagner, F., Zhang, Y.-L., Fass, D., Joseph, N., Gale, J., Weïwer, M., McCarren, P., Fisher, S., Kaya, T., and Zhao, W.-N. (2015). Kinetically selective inhibitors of histone deacetylase 2 (HDAC2) as cognition enhancers. Chem. Sci. 6, 804–815.10.1039/C4SC02130DSuche in Google Scholar PubMed PubMed Central
Wawrzinek, R., Ziomkowska, J., Heuveling, J., Mertens, M., Herrmann, A., Schneider, E., and Wessig, P. (2013). DBD dyes as fluorescence lifetime probes to study conformational changes in proteins. Chemistry 19, 17349–17357.10.1002/chem.201302368Suche in Google Scholar PubMed
Wentsch, H.K., Walter, N.M., Buhrmann, M., Mayer-Wrangowski, S., Rauh, D., Zaman, G.J.R., Willemsen-Seegers, N., Buijsman, R.C., Henning, M., Dauch, D., et al. (2017). Optimized target residence time: type I1/2 inhibitors for p38alpha MAP kinase with improved binding kinetics through direct interaction with the R-spine. Angewandte Chemie 56, 5363–5367.10.1002/anie.201701185Suche in Google Scholar PubMed
Whitehead, L., Dobler, M.R., Radetich, B., Zhu, Y., Atadja, P.W., Claiborne, T., Grob, J.E., McRiner, A., Pancost, M.R., Patnaik, A., et al. (2011). Human HDAC isoform selectivity achieved via exploitation of the acetate release channel with structurally unique small molecule inhibitors. Bioorg. Med. Chem. 19, 4626–4634.10.1016/j.bmc.2011.06.030Suche in Google Scholar PubMed
Wright, J.S., Anderson, J.M., Shadnia, H., Durst, T., and Katzenellenbogen, J.A. (2013). Experimental versus predicted affinities for ligand binding to estrogen receptor: iterative selection and rescoring of docked poses systematically improves the correlation. J. Comput. Aided Mol. Des. 27, 707–721.10.1007/s10822-013-9670-6Suche in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0363).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Unforgettable force – crosstalk and memory of mechanosensitive structures
- Differential expression of DLG1 as a common trait in different human diseases: an encouraging issue in molecular pathology
- The effects of oxidative stress on the development of atherosclerosis
- Research Articles/Short Communications
- Protein Structure and Function
- Kinetically selective and potent inhibitors of HDAC8
- Assay of β-glucosidase 2 (GBA2) activity using lithocholic acid β-3-O-glucoside substrate for cultured fibroblasts and glucosylceramide for brain tissue
- Cell Biology and Signaling
- Changqin NO. 1 inhibits neuronal apoptosis via suppressing GAS5 expression in a traumatic brain injury mice model
- Nm23-H1 inhibits hypoxia induced epithelial-mesenchymal transition and stemness in non-small cell lung cancer cells
- Nodal promotes the malignancy of non-small cell lung cancer (NSCLC) cells via activation of NF-κB/IL-6 signals
- MCT1, MCT4 and CD147 expression and 3-bromopyruvate toxicity in colorectal cancer cells are modulated by the extracellular conditions
- Proteolysis
- Metalloprotease inhibitor profiles of human ADAM8 in vitro and in cell-based assays
Artikel in diesem Heft
- Frontmatter
- Reviews
- Unforgettable force – crosstalk and memory of mechanosensitive structures
- Differential expression of DLG1 as a common trait in different human diseases: an encouraging issue in molecular pathology
- The effects of oxidative stress on the development of atherosclerosis
- Research Articles/Short Communications
- Protein Structure and Function
- Kinetically selective and potent inhibitors of HDAC8
- Assay of β-glucosidase 2 (GBA2) activity using lithocholic acid β-3-O-glucoside substrate for cultured fibroblasts and glucosylceramide for brain tissue
- Cell Biology and Signaling
- Changqin NO. 1 inhibits neuronal apoptosis via suppressing GAS5 expression in a traumatic brain injury mice model
- Nm23-H1 inhibits hypoxia induced epithelial-mesenchymal transition and stemness in non-small cell lung cancer cells
- Nodal promotes the malignancy of non-small cell lung cancer (NSCLC) cells via activation of NF-κB/IL-6 signals
- MCT1, MCT4 and CD147 expression and 3-bromopyruvate toxicity in colorectal cancer cells are modulated by the extracellular conditions
- Proteolysis
- Metalloprotease inhibitor profiles of human ADAM8 in vitro and in cell-based assays