Home Assay of β-glucosidase 2 (GBA2) activity using lithocholic acid β-3-O-glucoside substrate for cultured fibroblasts and glucosylceramide for brain tissue
Article
Licensed
Unlicensed Requires Authentication

Assay of β-glucosidase 2 (GBA2) activity using lithocholic acid β-3-O-glucoside substrate for cultured fibroblasts and glucosylceramide for brain tissue

  • Klaus Harzer EMAIL logo , Yildiz Yildiz and Stefanie Beck-Wödl
Published/Copyright: January 17, 2019

Abstract

Beta (β)-glucosidase 2 (GBA2) is deficient in a form of human spastic paraplegia due to defects in GBA2 (SPG46). GBA2 was proposed as a modifier of Gaucher disease, a lysosomal storage disease resulting from deficient β-glucosidase 1; GBA1. Current GBA2 activity assays using artificial substrates incompletely model the activity encountered in vivo. We studied GBA2 activity, using lithocholic acid β-glucoside or glucosylceramide as natural β-glucosidase substrates in murine tissues or cultured patient fibroblasts with the pathologic genotypes: Gba1−/−; Gba2−/−; GBA1−/−; GBA2+/− and found expected and unexpected deviations from normal controls.

Acknowledgments

Dr. Rebecca Schüle-Freyer, Dr. Ulrike Ulmer, Mrs. Jennifer Reichbauer, all from Centre for Neurology, Hertie Institute for Clinical Brain Research and German Centre of Neurodegenerative Diseases (DZNE), Eberhard-Karls-University Tübingen, Germany, are sincerely thanked for having provided the cell lines from the SPG46-heterozygotes GBA2+/−, for their advice and help with cell culturing. Dr. Ellen Sidransky, Medical Genetics Branch NIH, Bethesda, USA, is thanked for the tissues and fibroblasts from the Gba1−/− mouse.

References

Aureli, M., Samarani, M., Loberto, N., Mancini, G., Murdica, V., Chiricozzi, E., Prinetti, A., Bassi, R., and Sonnino, S. (2016). Current and novel aspects on the non-lysosomal β-glucosylceramidase GBA2. Neurochem. Res. 41, 210–220.10.1007/s11064-016-1833-0Search in Google Scholar PubMed

Ben Bdira, F., Artola, M., Overkleeft, H.S., Ubbink, M., and Aerts, J.M. (2018). Distinguishing the differences in β-glucosylceramidase folds, dynamics, and actions informs therapeutic uses. J. Lipid Res. 59, 2262–2276.10.1194/jlr.R086629Search in Google Scholar PubMed PubMed Central

Boot, R.G., Verhoek, M., Donker-Koopman, W., Strijland, A., van Marle, J., Overkleeft, H.S., Wennekes, T., and Aerts, J.M. (2007). Identification of the non-lysosomal glucosylceramidase as β-glucosidase 2. J. Biol. Chem. 282, 1305–1312.10.1074/jbc.M610544200Search in Google Scholar PubMed

Charoenwattanasatien, R., Pengthaisong, S., Breen, I., Mutoh, R., Sansenya, S., Hua, Y., Tankrathok, A., Wu, L., Songsiriritthigul, C., Tanaka, H., Williams, S.J., et al. (2016). Bacterial β-glucosidase reveals the structural and functional basis of genetic defects in human glucocerebrosidase 2 (GBA2). ACS Chem. Biol. 11, 1891–1900.10.1021/acschembio.6b00192Search in Google Scholar PubMed PubMed Central

Davidson, B.A., Hassan, S., Garcia, E.J., Tayebi, N., and Sidransky, E. (2018). Exploring genetic modifiers of Gaucher disease: the next horizon. Hum. Mutat. 39, 1739–1751.10.1002/humu.23611Search in Google Scholar PubMed PubMed Central

Fuller, M., Rozaklis, T., Lovejoy, M., Zarrinkalam, K., Hopwood, J.J., and Meikle, P.J. (2008). Glucosylceramide accumulation is not confined to the lysosome in fibroblasts from patients with Gaucher disease. Mol. Genet. Metab. 93, 437–443.10.1016/j.ymgme.2007.11.011Search in Google Scholar PubMed

Hamler, R., Brignol, N., Clark, S.W., Morrison, S., Dungan, L.B., Chang, H.H., Khanna, R., Frascella, M., Valenzano, K.J., Benjamin, E.R., et al. (2017). Glucosylceramide and glucosylsphingosine quantitation by liquid chromatography-tandem mass spectrometry to enable in vivo preclinical studies of neuronopathic Gaucher disease. Anal. Chem. 89, 8288–8295.10.1021/acs.analchem.7b01442Search in Google Scholar PubMed

Hammer, M.B., Eleuch-Fayache, G., Schottlaender, L.V., Nehdi, H., Gibbs, J.R., Arepalli, S.K., Chong, S.B., Hernandez, D.G., Sailer, A., Liu, G., et al. (2013). Mutations in GBA2 cause differences in beta-glycosylceramidase folds, dynamics, and actions informs therapeutic uses. autosomal-recessive cerebellar ataxia with spasticity. Am. J. Hum. Genet. 92, 245–251.10.1016/j.ajhg.2012.12.012Search in Google Scholar PubMed PubMed Central

Harzer, K., and Yildiz, Y. (2015). High β-glucosidase (GBA) activity not attributable to GBA1 and GBA2 in live normal and enzyme-deficient fibroblasts may emphasise the role of additional GBAs. Biol. Chem. 396, 1241–1246.10.1515/hsz-2015-0144Search in Google Scholar PubMed

Harzer, K., Blech-Hermoni, Y., Goldin, E., Felderhoff-Mueser, U., Igney, C., Sidransky, E., and Yildiz, Y. (2012). Beta-glucosidase 1 (GBA1) is a second bile acid β-glucosidase in addition to β-glucosidase 2 (GBA2). Study in β-glucosidase deficient mice and humans. Biochem. Biophys. Res. Commun. 423, 308–312.10.1016/j.bbrc.2012.05.117Search in Google Scholar PubMed PubMed Central

Körschen, H.G., Yildiz, Y., Raju, D.N., Schonauer, S., Bönigk, W., Jansen, V., Kremmer, E., Kaupp, U.B., and Wachten, D. (2013). The non-lysosomal beta-glucosidase GBA2 is a non-integral membrane-associated protein at the endoplasmic reticulum (ER) and Golgi. J. Biol. Chem. 288, 3381–3393.10.1074/jbc.M112.414714Search in Google Scholar PubMed PubMed Central

Marques, A.R., Aten, J., Ottenhoff, R., van Roomen, C.P., Herrera Moro, D., Claessen, N., Vinueza Veloz, M.F., Zhou, K., Lin, Z., Mirzaian, M., et al. (2015). Reducing GBA2 activity ameliorates neuropathology in Niemann-Pick type C mice. PLoS One. 10. doi: 10.1371/journal.pone.0135889. eCollection 2015.10.1371/journal.pone.0135889Search in Google Scholar PubMed PubMed Central

Marschall, H.-U., Egestad, B., Matern, H., Matern, S., and Sjövall, J. (1987). Evidence for bile acid glucosides as normal constituents in human urine. FEBS Lett. 213, 411–417.10.1016/0014-5793(87)81532-6Search in Google Scholar PubMed

Martin, E., Schüle, R., Smets, K., Rastetter, A., Boukhris, A., Loureiro, J.L., Gonzalez, M.A., Mundwiller, E., Deconinck, T., Wessner, M., et al. (2013). Loss of function of glucocerebrosidase GBA2 is responsible for motor neuron defects in hereditary spastic paraplegia. Am. J. Hum. Genet. 92, 238–244.10.1016/j.ajhg.2012.11.021Search in Google Scholar PubMed PubMed Central

Matern, H., Gartzen, R., and Matern, S. (1992). Beta-glucosidase activity towards a bile acid glucoside in human liver. FEBS Lett. 314, 183–186.10.1016/0014-5793(92)80970-RSearch in Google Scholar PubMed

Matern, H., Heinemann, H., Legler, G., and Matern, S. (1997). Purification and characterization of a microsomal bile acid beta-glucosidase from human liver. J. Biol. Chem. 272, 11261–11267.10.1074/jbc.272.17.11261Search in Google Scholar PubMed

Orvisky, E., Sidransky, E., McKinney, C.E., Lamarca, M.E., Samimi, R., Krasnewich, D., Martin, B.M., and Ginns, E.I. (2000). Glucosylsphingosine accumulation in mice and patients with type 2 Gaucher disease begins early in gestation. Pediatr. Res. 48, 233–237.10.1203/00006450-200008000-00018Search in Google Scholar PubMed

Overkleeft, H.S., Renkema, G.H., Neele, J., Vianello, P., Hung, I.O., Strijland, A., van der Burg, A.M., Koomen, G.J., Pandit, U.K., and Aerts, J.M. (1998). Generation of specific deoxynojirimycin-type inhibitors of the non-lysosomal glucosylceramidase. J. Biol. Chem. 273, 26522–265227.10.1074/jbc.273.41.26522Search in Google Scholar PubMed

Ridley, C.M., Thur, K.E., Shanahan, J., Thillaiappan, N.B., Shen, A., Uhl, K., Walden, C.M., Rahim, A.A., Waddington, S.N., Platt, F.M., et al. (2013). β-Glucosidase 2 (GBA2) activity and imino sugar pharmacology. J. Biol. Chem. 288, 26052–26066.10.1074/jbc.M113.463562Search in Google Scholar PubMed PubMed Central

Schonauer, S., Körschen, H.G., Penno, A., Rennhack, A., Breiden, B., Sandhoff, K., Gutbrod, K., Dörmann, P., Raju, D.N., Haberkant, P., et al. (2017). Identification of a feedback loop involving β-glucosidase 2 and its product sphingosine sheds light on the molecular mechanisms in Gaucher disease. J. Biol. Chem. 292, 6177–6189.10.1074/jbc.M116.762831Search in Google Scholar PubMed PubMed Central

Sultana, S., Reichbauer, J., Schüle, R., Mochel, F., Synofzik, M., and van der Spoel, A.C. (2015). Lack of enzyme activity in GBA2 mutants associated with hereditary spastic paraplegia/cerebellar ataxia (SPG46). Biochem. Biophys. Res. Commun. 465, 35–40.10.1016/j.bbrc.2015.07.112Search in Google Scholar PubMed

Sultana, S., Truong, N.Y., Vieira, D.B., Wigger, J.G., Forrester, A.M., Veinotte, C.J., Berman, J.N., and van der Spoel, A.C. (2016). Characterization of the zebrafish homolog of β-glucosidase 2: A target of the drug miglustat. Zebrafish 13, 177–187.10.1089/zeb.2015.1152Search in Google Scholar PubMed

Tamargo, R.J., Velayati, A., Goldin, E., and Sidransky, E. (2012). The role of saposin C in Gaucher disease. Mol. Genet. Metab. 106, 257–263.10.1016/j.ymgme.2012.04.024Search in Google Scholar PubMed PubMed Central

van Weely, S., Brandsma, M., Strijland, A., Tager, J.M., and Aerts, J.M. (1993). Demonstration of the existence of a second, non-lysosomal glucocerebrosidase that is not deficient in Gaucher disease. Biochim. Biophys. Acta 1181, 55–62.10.1016/0925-4439(93)90090-NSearch in Google Scholar PubMed

Wennekes, T., Meijer, A.J., Groen, A.K., Boot, R.G., Groener, J.E., van Eijk, M., Ottenhoff, R., Bijl, N., Ghauharali, K., Song, H., et al. (2010). Dual-action lipophilic iminosugar improves glycemic control in obese rodents by reduction of visceral glycosphingolipids and buffering of carbohydrate assimilation. J. Med. Chem. 28, 689–698.10.1021/jm901281mSearch in Google Scholar PubMed

Yildiz, Y., Matern, H., Thompson, B., Allegood, J.C., Warren, R.L., Ramirez, D.M., Hammer, R.E., Hamra, F.K., Matern, S., and Russell, D.W. (2006). Mutation of β-glucosidase 2 causes glycolipid storage disease and impaired male fertility. J. Clin. Invest. 116, 2985–2994.10.1172/JCI29224Search in Google Scholar PubMed PubMed Central

Yildiz, Y., Hoffmann, P., Vom Dahl, S., Breiden, B., Sandhoff, R., Niederau, C., Horwitz, M., Karlsson, S., Filocamo, M., Elstein, D., et al. (2013). Functional and genetic characterization of the non-lysosomal glucosylceramidase 2 as a modifier for Gaucher disease. Orphanet J. Rare. Dis. 8, 151.10.1186/1750-1172-8-151Search in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0438).


Received: 2018-02-27
Accepted: 2018-11-27
Published Online: 2019-01-17
Published in Print: 2019-06-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2018-0438/html
Scroll to top button