Abstract
Atherosclerosis is a cardiovascular disease (CVD) known widely world wide. Several hypothesizes are suggested to be involved in the narrowing of arteries during process of atherogenesis. The oxidative modification hypothesis is related to oxidative and anti-oxidative imbalance and is the most investigated. The aim of this study was to review the role of oxidative stress in atherosclerosis. Furthermore, it describes the roles of oxidative/anti-oxidative enzymes and compounds in the macromolecular and lipoprotein modifications and in triggering inflammatory events. The reactive oxygen (ROS) and reactive nitrogen species (RNS) are the most important endogenous sources produced by non-enzymatic and enzymatic [myeloperoxidase (MPO), nicotinamide adenine dinucleotide phosphate (NADH) oxidase and lipoxygenase (LO)] reactions that may be balanced with anti-oxidative compounds [glutathione (GSH), polyphenols and vitamins] and enzymes [glutathione peroxidase (Gpx), peroxiredoxins (Prdx), superoxide dismutase (SOD) and paraoxonase (PON)]. However, the oxidative and anti-oxidative imbalance causes the involvement of cellular proliferation and migration signaling pathways and macrophage polarization leads to the formation of atherogenic plaques. On the other hand, the immune occurrences and the changes in extra cellular matrix remodeling can develop atherosclerosis process.
References
AC’t Hoen, P., Van der Lans, C.A., Van Eck, M., Bijsterbosch, M.K., Van Berkel, T.J., and Twisk, J. (2003). Aorta of ApoE-deficient mice responds to atherogenic stimuli by a prelesional increase and subsequent decrease in the expression of antioxidant enzymes. Circ. Res. 93, 262–269.10.1161/01.RES.0000082978.92494.B1Suche in Google Scholar
Agrawal, R., Muangman, S., Layne, M., Melo, L., Perrella, M., Lee, R., Zhang, L., Lopez-Ilasaca, M., and Dzau, V. (2004). Pre-emptive gene therapy using recombinant adeno-associated virus delivery of extracellular superoxide dismutase protects heart against ischemic reperfusion injury, improves ventricular function and prolongs survival. Gene Ther. 11, 962–969.10.1038/sj.gt.3302250Suche in Google Scholar
Ahn, J., Gammon, M.D., Santella, R.M., Gaudet, M.M., Britton, J.A., Teitelbaum, S.L., Terry, M.B., Nowell, S., Davis, W., Garza, C., et al. (2005). Associations between breast cancer risk and the catalase genotype, fruit and vegetable consumption, and supplement use. Am. J. Epidemiol. 162, 943–952.10.1093/aje/kwi306Suche in Google Scholar
Allentoff, A.J., Bolton, J.L., Wilks, A., Thompson, J.A., and Ortiz de Montellano, P.R. (1992). Heterolytic versus homolytic peroxide bond cleave by sperm whale myoglobin and myoglobin mutants. J. Am. Chem. Soc. 114, 9744–9749.10.1021/ja00051a003Suche in Google Scholar
Antman, E.M. and Braunwald, E. (1997). Acute myocardial infarction. In: Heart Disease, a Textbook of Cardiovascular Disease, Vol. II, 5th ed., E. Braunwald, ed. (Philadelphia: W.B. Saunders Company), pp. 1184–1288.Suche in Google Scholar
Arts, I.C. and Hollman, P.C. (2005). Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 81, 317S–325S.10.1093/ajcn/81.1.317SSuche in Google Scholar
Austin, M.A., Hokanson, J.E., and Edwards, K.L. (1998). Hypertriglyceridemia as a cardiovascular risk factor. Am. J. Cardiol. 81, 7B–12B.10.1016/S0002-9149(98)00031-9Suche in Google Scholar
Aviram, M., Hardak, E., Vaya, J., Mahmood, S., Milo, S., Hoffman, A., Billicke, S., Draganov, D., and Rosenblat, M. (2000). Human serum paraoxonases (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions. Circulation 101, 2510–2517.10.1161/01.CIR.101.21.2510Suche in Google Scholar PubMed
Bae, Y.S., Kang, S.W., Seo, M.S., Baines, I.C., Tekle, E., Chock, P.B., and Rhee, S.G. (1997). Epidermal growth factor (EGF)-induced generation of hydrogen peroxide Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 217–221.10.1074/jbc.272.1.217Suche in Google Scholar
Baldus, S., Heeschen, C., Meinertz, T., Zeiher, A.M., Eiserich, J.P., Münzel, T., Simoons, M.L., and Hamm, C.W. (2003). Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 108, 1440–1445.10.1161/01.CIR.0000090690.67322.51Suche in Google Scholar PubMed
Ballinger, S.W., Patterson, C., Knight-Lozano, C.A., Burow, D.L., Conklin, C.A., Hu, Z., Reuf, J., Horaist, C., Lebovitz, R., Hunter, G.C., et al. (2002). Mitochondrial integrity and function in atherogenesis. Circulation 106, 544–549.10.1161/01.CIR.0000023921.93743.89Suche in Google Scholar PubMed
Battelli, M.G., Bolognesi, A., and Polito, L. (2014). Pathophysiology of circulating xanthine oxidoreductase: new emerging roles for a multi-tasking enzyme. Biochim. Biophys. Acta Mol. Basis Dis. 1842, 1502–1517.10.1016/j.bbadis.2014.05.022Suche in Google Scholar
Belleville, J. (2002). The French paradox: possible involvement of ethanol in the protective effect against cardiovascular diseases. Nutrition 18, 173–177.10.1016/S0899-9007(01)00721-3Suche in Google Scholar
Bergmeier, C., Siekmeier, R., and Gross, W. (2004). Distribution spectrum of paraoxonase activity in HDL fractions. Clin. Chem. 50, 2309–2315.10.1373/clinchem.2004.034439Suche in Google Scholar
Biswas, S.K., Newby, D.E., Rahman, I., and Megson, I.L. (2005). Depressed glutathione synthesis precedes oxidative stress and atherogenesis in Apo-E−/− mice. Biochem. Biophys. Res. Commun. 338, 1368–1373.10.1016/j.bbrc.2005.10.098Suche in Google Scholar
Bjelakovic, G., Nikolova, D., Simonetti, R.G., and Gluud, C. (2004). Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis. Lancet 364, 1219–1228.10.1016/S0140-6736(04)17138-9Suche in Google Scholar
Blankenberg, S., Rupprecht, H.J., Bickel, C., Torzewski, M., Hafner, G., Tiret, L., Smieja, M., Cambien, F., Meyer, J., Lackner, K.J., et al. (2003). Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N. Engl. J. Med. 349, 1605–1613.10.1056/NEJMoa030535Suche in Google Scholar PubMed
Bonomini, F., Fabiano, A., Bianchi, R., Tengattini, S., and Rezzani, R. (2008). Atherosclerosis and oxidative stress. Histol. Histopathol. 23, 381–390.Suche in Google Scholar
Boskovic, M., Vovk, T., Kores Plesnicar, B., and Grabnar, I. (2011). Oxidative stress in schizophrenia. Curr. Neuropharmacol. 9, 301–312.10.2174/157015911795596595Suche in Google Scholar PubMed PubMed Central
Boudjeltia, K.Z., Moguilevsky, N., Legssyer, I., Babar, S., Guillaume, M., Delree, P., Vanhaeverbeek, M., Brohée, D., Ducobu, J., Remacle, C., et al. (2004). Oxidation of low density lipoproteins by myeloperoxidase at the surface of endothelial cells: an additional mechanism to subendothelium oxidation. Biochem. Biophys. Res. Commun. 325, 434–438.10.1016/j.bbrc.2004.10.049Suche in Google Scholar PubMed
Bräsen, J.H., Leppänen, O., Inkala, M., Heikura, T., Levin, M., Ahrens, F., Rutanen, J., Pietsch, H., Bergqvist, D., Levonen, A.-L., et al. (2007). Extracellular superoxide dismutase accelerates endothelial recovery and inhibits in-stent restenosis in stented atherosclerotic Watanabe heritable hyperlipidemic rabbit aorta. J. Am. Coll. Cardiol. 50, 2249–2253.10.1016/j.jacc.2007.08.038Suche in Google Scholar PubMed
Brown, M.R., Miller, F.J., Li, W.-G., Ellingson, A.N., Mozena, J.D., Chatterjee, P., Engelhardt, J.F., Zwacka, R.M., Oberley, L.W., Fang, X., et al. (1999). Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells. Circ. Res. 85, 524–533.10.1161/01.RES.85.6.524Suche in Google Scholar
Buczyński, A., Wachowicz, B., Kȩdziora-Kornatowska, K., Tkaczewski, W., and Kȩdziora, J. (1993). Changes in antioxidant enzymes activities, aggregability and malonyldialdehyde concentration in blood platelets from patients with coronary heart disease. Atherosclerosis 100, 223–228.10.1016/0021-9150(93)90208-CSuche in Google Scholar
Cai, H. and Harrison, D.G. (2000). Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res. 87, 840–844.10.1161/01.RES.87.10.840Suche in Google Scholar PubMed
Cheeseman, K. and Slater, T. (1993). An introduction to free radical biochemistry. Br. Med. Bull. 49, 481–493.10.1093/oxfordjournals.bmb.a072625Suche in Google Scholar PubMed
Cherubini, A., Vigna, G., Zuliani, G., Ruggiero, C., Senin, U., and Fellin, R. (2005). Role of anti-oxidants in atherosclerosis: epidemiological and clinical update. Curr. Pharm. Des. 11, 2017–2032.10.2174/1381612054065783Suche in Google Scholar PubMed
Colis, L.C., Raychaudhury, P., and Basu, A.K. (2008). Mutational Specificity of γ-radiation-induced guanine-thymine and thymine-guanine intrastrand cross-links in mammalian cells and translesion synthesis past the guanine-thymine lesion by human DNA polymerase η†. Biochemistry 47, 8070–8079.10.1021/bi800529fSuche in Google Scholar PubMed PubMed Central
Collins, T. and Cybulsky, M.I. (2001). NF-κB: pivotal mediator or innocent bystander in atherogenesis? J. Clin. Invest. 107, 255–264.10.1172/JCI10373Suche in Google Scholar PubMed PubMed Central
Conway, J.P. and Kinter, M. (2006). Dual role of peroxiredoxin I in macrophage-derived foam cells. J. Biol. Chem. 281, 27991–28001.10.1074/jbc.M605026200Suche in Google Scholar PubMed
Corte, E.D. and Stirpe, F. (1972). The regulation of rat liver xanthine oxidase. Involvement of thiol groups in the conversion of the enzyme activity from dehydrogenase (type D) into oxidase (type O) and purification of the enzyme. Biochem. J. 126, 739–745.10.1042/bj1260739Suche in Google Scholar PubMed PubMed Central
Costa, L.G., Cole, T.B., Jarvik, G.P., and Furlong, C.E. (2003). Functional genomics of the paraoxonase (PON1) polymorphisms: effects on pesticide sensitivity, cardiovascular disease, and drug metabolism. Annu. Rev. Med. 54, 371–392.10.1146/annurev.med.54.101601.152421Suche in Google Scholar PubMed
Cushing, S.D., Berliner, J.A., Valente, A.J., Territo, M.C., Navab, M., Parhami, F., Gerrity, R., Schwartz, C.J., and Fogelman, A.M. (1990). Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc. Natl. Acad. Sci. USA 87, 5134–5138.10.1073/pnas.87.13.5134Suche in Google Scholar PubMed PubMed Central
Cyrus, T., Witztum, J.L., Rader, D.J., Tangirala, R., Fazio, S., Linton, M.F., and Funk, C.D. (1999). Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E–deficient mice. J. Clin. Invest. 103, 1597–1604.10.1172/JCI5897Suche in Google Scholar PubMed PubMed Central
Dalle-Donne, I., Aldini, G., Carini, M., Colombo, R., Rossi, R., and Milzani, A. (2006). Protein carbonylation, cellular dysfunction, and disease progression. J. Cell. Mol. Med. 10, 389–406.10.1111/j.1582-4934.2006.tb00407.xSuche in Google Scholar PubMed PubMed Central
Daugherty, A., Dunn, J.L., Rateri, D.L., and Heinecke, J.W. (1994). Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J. Clin. Invest. 94, 437.10.1172/JCI117342Suche in Google Scholar PubMed PubMed Central
Davignon, J. and Ganz, P. (2004). Role of endothelial dysfunction in atherosclerosis. Circulation 109 (23 Suppl. 1), III-27–III-32.10.1161/01.CIR.0000131515.03336.f8Suche in Google Scholar PubMed
De Caterina, R. and Zampolli, A. (2004). From asthma to atherosclerosis – 5-lipoxygenase, leukotrienes, and inflammation. N. Engl. J. Med. 350, 4–7.10.1056/NEJMp038190Suche in Google Scholar PubMed
de Haan, J.B., Bladier, C., Griffiths, P., Kelner, M., O’Shea, R.D., Cheung, N.S., Bronson, R., Silvestro, M.J., Wild, S., Zheng, S.S., et al. (1998). Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J. Biol. Chem. 273, 22528–22536.10.1074/jbc.273.35.22528Suche in Google Scholar PubMed
de Haan, J.B., Witting, P.K., Stefanovic, N., Pete, J., Daskalakis, M., Kola, I., Stocker, R., and Smolich, J.J. (2006). Deficiency in the antioxidant enzyme glutathione peroxidase-1 (Gpx1) does not increase atherosclerosis in C57BL/J6 mice fed a high fat diet. J Lipid Res. 47, 1157–1167.10.1194/jlr.M500377-JLR200Suche in Google Scholar PubMed
Delgado Alves, J., Ames, P.R.J., Donohue, S., Stanyer, L., Noorouz-Zadeh, J., Ravirajan, C., and Isenberg, D. (2002). Antibodies to high-density lipoprotein and β2-glycoprotein I are inversely correlated with paraoxonase activity in systemic lupus erythematosus and primary antiphospholipid syndrome. Arthritis Rheumatol. 46, 2686–2694.10.1002/art.10542Suche in Google Scholar PubMed
Derick, H., Williams, E., and Cadenas, E. (2001). Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem. J. 353, 411–416.10.1042/bj3530411Suche in Google Scholar
Desco, M.-C., Asensi, M., Márquez, R., Martínez-Valls, J., Vento, M., Pallardó, F.V., Sastre, J., and Viña, J. (2002). Xanthine oxidase is involved in free radical production in type 1 diabetes. Diabetes 51, 1118–1124.10.2337/diabetes.51.4.1118Suche in Google Scholar PubMed
Drexler, H. (1998). Factors involved in the maintenance of endothelial function. Am. J. Cardiol. 82, S3–S4.10.1016/S0002-9149(98)00667-5Suche in Google Scholar
Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95.10.1152/physrev.00018.2001Suche in Google Scholar
Duncan, B., Schmidt, M., Pankow, J., Ballantyne, C., Couper, D., Vigo, A., Hoogeveen, R., Folsom, A., and Heiss, G. (2003). Atherosclerosis Risk in Communities Study. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 52, 1799–1805.10.2337/diabetes.52.7.1799Suche in Google Scholar
Durrington, P., Mackness, B., and Mackness, M. (2001). Paraoxonase and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 21, 473–480.10.1161/01.ATV.21.4.473Suche in Google Scholar
Ellis, G.R., Anderson, R.A., Lang, D., Blackman, D.J., Morris, R.K., Morris-Thurgood, J., McDowell, I.F., Jackson, S.K., Lewis, M.J., Frenneaux, M.P., et al. (2000). Neutrophil superoxide anion–generating capacity, endothelial function and oxidative stress in chronic heart failure: effects of short-and long-term vitamin C therapy. J. Am. Coll. Cardiol. 36, 1474–1482.10.1016/S0735-1097(00)00916-5Suche in Google Scholar
Esterbauer, H., Gebicki, J., Puhl, H., and Jürgens, G. (1992). The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic. Biol. Med. 13, 341–390.10.1016/0891-5849(92)90181-FSuche in Google Scholar
Evans, M.D. and Cooke, M.S. (2004). Factors contributing to the outcome of oxidative damage to nucleic acids. Bioessays 26, 533–542.10.1002/bies.20027Suche in Google Scholar
Fattman, C.L., Schaefer, L.M., and Oury, T.D. (2003). Extracellular superoxide dismutase in biology and medicine. Free Radic. Biol. Med. 35, 236–256.10.1016/S0891-5849(03)00275-2Suche in Google Scholar
Fiedler, L.R. and Eble, J.A. (2009). Decorin regulates endothelial cell-matrix interactions during angiogenesis. Cell Adh. Migr. 3, 3–6.10.4161/cam.3.1.7275Suche in Google Scholar PubMed PubMed Central
Firoozrai, M., Mehrabi, H., Ehsani, A., Najafi, M., and Ghaffari, M. (2007). Activities of anti-oxidative enzymes, catalase and glutathione reductase in red blood cells of patients with coronary artery disease. Asian J. Biochem. 2, 437–440.10.3923/ajb.2007.437.440Suche in Google Scholar
Fleming, R.M. (1999). The pathogenesis of vascular disease. In: Textbook of Angiology, J.C. Chang, ed. (New York: Springer-Verlag), pp. 787–798.10.1007/978-1-4612-1190-7_64Suche in Google Scholar
Fleming, R. (2003). Angina and coronary ischemia are the result of coronary regional blood flow differences. J. Am. Coll. Angiol. 1, 127–142.Suche in Google Scholar
Förstermann, U. (2010). Nitric oxide and oxidative stress in vascular disease. Pflüger’s Arch. 459, 923–939.10.1007/s00424-010-0808-2Suche in Google Scholar
Frid, M.G., Dempsey, E.C., Durmowicz, A.G., and Stenmark, K.R. (1997). Smooth muscle cell heterogeneity in pulmonary and systemic vessels. Arterioscler. Thromb. Vasc. Biol. 17, 1203–1209.10.1161/01.ATV.17.7.1203Suche in Google Scholar
Fujii, J. and Ikeda, Y. (2002). Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox Rep. 7, 123–130.10.1179/135100002125000352Suche in Google Scholar
Fukai, T., Siegfried, M.R., Ushio-Fukai, M., Cheng, Y., Kojda, G., and Harrison, D.G. (2000). Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J. Clin. Invest. 105, 1631–1639.10.1172/JCI9551Suche in Google Scholar
Gems, D. and Doonan, R. (2009). Antioxidant defense and aging in C. elegans: is the oxidative damage theory of aging wrong? Cell Cycle 8, 1681–1687.10.4161/cc.8.11.8595Suche in Google Scholar
Gems, D. and Partridge, L. (2008). Stress-response hormesis and aging: “that which does not kill us makes us stronger”. Cell Metab. 7, 200–203.10.1016/j.cmet.2008.01.001Suche in Google Scholar
Glantzounis, G., Tsimoyiannis, E., Kappas, A., and Galaris, D. (2005). Uric acid and oxidative stress. Curr. Pharm. Des. 11, 4145–4151.10.2174/138161205774913255Suche in Google Scholar
Gokce, N., Keaney, J.F., Frei, B., Holbrook, M., Olesiak, M., Zachariah, B.J., Leeuwenburgh, C., Heinecke, J.W., and Vita, J.A. (1999). Long-term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 99, 3234–3240.10.1161/01.CIR.99.25.3234Suche in Google Scholar
Góth, L. and Vitai, M. (2003). The effects of hydrogen peroxide promoted by homocysteine and inherited catalase deficiency on human hypocatalasemic patients. Free Radic. Biol. Med. 35, 882–888.10.1016/S0891-5849(03)00435-0Suche in Google Scholar
Graham, A., Hogg, N., Kalyanaraman, B., O’Leary, V., Darley-Usmar, V., and Moncada, S. (1993). Peroxynitrite modification of low-density lipoprotein leads to recognition by the macrophage scavenger receptor. FEBS Lett. 330, 181–185.10.1016/0014-5793(93)80269-ZSuche in Google Scholar
Grande-Allen, K., Osman, N., Ballinger, M., Dadlani, H., Marasco, S., and Little, P. (2007). Glycosaminoglycan synthesis and structure as targets for the prevention of calcific aortic valve disease. Cardiovasc. Res. 76, 19–28.10.1016/j.cardiores.2007.05.014Suche in Google Scholar
Grendling, K., Sorescu, D., and Ushio-Fukai, M. (2000). NAD (P) H oxidase: Role in cardiovascular biology and diseases. Circ. Res. 86, 494–501.10.1161/01.RES.86.5.494Suche in Google Scholar
Griendling, K.K. and FitzGerald, G.A. (2003). Oxidative stress and cardiovascular injury. Circulation 108, 2034–2040.10.1161/01.CIR.0000093661.90582.c4Suche in Google Scholar
Griendling, K.K., Sorescu, D., Lassègue, B., and Ushio-Fukai, M. (2000). Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler. Thromb. Vasc. Biol. 20, 2175–2183.10.1161/01.ATV.20.10.2175Suche in Google Scholar
Guo, X., Yamada, S., Tanimoto, A., Ding, Y., Wang, K.-Y., Shimajiri, S., Murata, Y., Kimura, S., Tasaki, T., Nabeshima, A., et al. (2012). Overexpression of peroxiredoxin 4 attenuates atherosclerosis in apolipoprotein E knockout mice. Antioxid. Redox Signal. 17, 1362–1375.10.1089/ars.2012.4549Suche in Google Scholar
Guzik, T.J., Mussa, S., Gastaldi, D., Sadowski, J., Ratnatunga, C., Pillai, R., and Channon, K.M. (2002). Mechanisms of increased vascular superoxide production in human diabetes mellitus. Circulation 105, 1656–1662.10.1161/01.CIR.0000012748.58444.08Suche in Google Scholar
Haffner, S.M. (2003). Insulin resistance, inflammation, and the prediabetic state. Am. J. Cardiol. 92, 18–26.10.1016/S0002-9149(03)00612-XSuche in Google Scholar
Haj, M.D., Ezzaher, A., Araoud, M., Neffati, F., Douki, W., and Najjar, M. (2009). Paraoxonase 1 (PON1) activity and lipid parameters in Tunisian smokers. Ann. Biol. Clin. (Paris) 68, 143–147.10.1684/abc.2010.0418Suche in Google Scholar
Halliwell, B. (2007). Oxidative stress and cancer: have we moved forward? Biochem. J. 401, 1–11.10.1042/BJ20061131Suche in Google Scholar PubMed
Halliwell, B. (2011). Free radicals and antioxidants – quo vadis? Trends Pharmacol. Sci. 32, 125–130.10.1016/j.tips.2010.12.002Suche in Google Scholar PubMed
Halliwell, B. and Gutteridge, J. (2015). Free Radicals in Biology and Medicine (USA: Oxford University Press), pp. 199–968.10.1093/acprof:oso/9780198717478.003.0005Suche in Google Scholar
Hamanishi, T., Furuta, H., Kato, H., Doi, A., Tamai, M., Shimomura, H., Sakagashira, S., Nishi, M., Sasaki, H., Sanke, T., et al. (2004). Functional variants in the glutathione peroxidase–1 (GPx-1) gene are associated with increased intima-media thickness of carotid arteries and risk of macrovascular diseases in Japanese type 2 diabetic patients. Diabetes 53, 2455–2460.10.2337/diabetes.53.9.2455Suche in Google Scholar
Hamilton, C.A., Miller, W.H., Sammy, A.-B., Brosnan, M.J., Drummond, R.D., McBRIDE, M.W., and Dominiczak, A.F. (2004). Strategies to reduce oxidative stress in cardiovascular disease. Clin. Sci. 106, 219–234.10.1042/CS20030379Suche in Google Scholar
Hansson, G.K. and Hermansson, A. (2011). The immune system in atherosclerosis. Nat. Immunol. 12, 204–212.10.1038/ni.2001Suche in Google Scholar
Harel, M., Aharoni, A., Gaidukov, L., Brumshtein, B., Khersonsky, O., Meged, R., Dvir, H., Ravelli, R.B., McCarthy, A., Toker, L., et al. (2004). Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat. Struct. Mol. Biol. 11, 412–419.10.1038/nsmb767Suche in Google Scholar
Hathaway, C.A., Heistad, D.D., Piegors, D.J., and Miller, F.J. (2002). Regression of atherosclerosis in monkeys reduces vascular superoxide levels. Circ. Res. 90, 277–283.10.1161/hh0302.104724Suche in Google Scholar
Heinecke, J.W. (2003). Oxidative stress: new approaches to diagnosis and prognosis in atherosclerosis. Am. J. Cardiol. 91, 12–16.10.1016/S0002-9149(02)03145-4Suche in Google Scholar
Heitzer, T., Schlinzig, T., Krohn, K., Meinertz, T., and Münzel, T. (2001). Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104, 2673–2678.10.1161/hc4601.099485Suche in Google Scholar PubMed
Hennig, B., Toborek, M., and McClain, C.J. (2001). High-energy diets, fatty acids and endothelial cell function: implications for atherosclerosis. J. Am. Coll. Nutr. 20, 97–105.10.1080/07315724.2001.10719021Suche in Google Scholar PubMed
Heumüller, S., Wind, S., Barbosa-Sicard, E., Schmidt, H.H., Busse, R., Schröder, K., and Brandes, R.P. (2008). Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51, 211–217.10.1161/HYPERTENSIONAHA.107.100214Suche in Google Scholar PubMed
Ho, J.E., Paultre, F., and Mosca, L. (2003). Is diabetes mellitus a cardiovascular disease risk equivalent for fatal stroke in women? Stroke 34, 2812–2816.10.1161/01.STR.0000102901.41780.5CSuche in Google Scholar PubMed
Hodgson, E.K. and Fridovich, I. (1975). The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry 14, 5294–5299.10.1021/bi00695a010Suche in Google Scholar PubMed
Hossain, G.S., Lynn, E.G., Maclean, K.N., Zhou, J., Dickhout, J.G., Lhoták, Š., Trigatti, B., Capone, J., Rho, J., Tang, D., et al. (2013). Deficiency of TDAG51 protects against atherosclerosis by modulating apoptosis, cholesterol efflux, and peroxiredoxin-1 expression. J. Am. Heart Assoc. 2, e000134.10.1161/JAHA.113.000134Suche in Google Scholar PubMed PubMed Central
Hui, D.Y. (2012). Phospholipase A2 enzymes in metabolic and cardiovascular diseases. Curr. Opin. Lipidol. 23, 235.10.1097/MOL.0b013e328351b439Suche in Google Scholar PubMed PubMed Central
Huie, R.E. and Padmaja, S. (1993). The reaction of NO with superoxide. Free Radic. Res. Commun. 18, 195–199.10.3109/10715769309145868Suche in Google Scholar PubMed
Huxley, R., Barzi, F., and Woodward, M. (2006). Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. Br. Med. J. 332, 73–78.10.1136/bmj.38678.389583.7CSuche in Google Scholar PubMed PubMed Central
Imai, H., Narashima, K., Arai, M., Sakamoto, H., Chiba, N., and Nakagawa, Y. (1998). Suppression of leukotriene formation in RBL-2H3 cells that overexpressed phospholipid hydroperoxide glutathione peroxidase. J. Biol. Chem. 273, 1990–1997.10.1074/jbc.273.4.1990Suche in Google Scholar PubMed
Inoue, T. and Node, K. (2006). Vascular failure: a new clinical entity for vascular disease. J. Hypertens. 24, 2121–2130.10.1097/01.hjh.0000249684.76296.4fSuche in Google Scholar PubMed
Iozzo, R.V. (1997). The family of the small leucine-rich proteoglycans: key regulators of matrix assembly and cellular growth. Crit. Rev. Biochem. Mol. Biol. 32, 141–174.10.3109/10409239709108551Suche in Google Scholar PubMed
Iozzo, R.V. (1999). The biology of the small leucine-rich proteoglycans Functional network of interactive proteins. J. Biol. Chem. 274, 18843–18846.10.1074/jbc.274.27.18843Suche in Google Scholar PubMed
Iozzo, R.V., Moscatello, D.K., McQuillan, D.J., and Eichstetter, I. (1999). Decorin is a biological ligand for the epidermal growth factor receptor. J. Biol. Chem. 274, 4489–4492.10.1074/jbc.274.8.4489Suche in Google Scholar PubMed
Isik, B., Ceylan, A., and Isik, R. (2007). Oxidative stress in smokers and non-smokers. Inhal. Toxicol. 19, 767–769.10.1080/08958370701401418Suche in Google Scholar
James, R.W., Garin, M.-C.B., Calabresi, L., Miccoli, R., von Eckardstein, A., Tilly-Kiesi, M., Taskinen, M.-R., Assmann, G., and Franceschini, G. (1998). Modulated serum activities and concentrations of paraoxonase in high density lipoprotein deficiency states. Atherosclerosis 139, 77–82.10.1016/S0021-9150(98)00058-6Suche in Google Scholar
Johnson, J.L. and Jackson, C.L. (2001). Atherosclerotic plaque rupture in the apolipoprotein E knockout mouse. Atherosclerosis 154, 399–406.10.1016/S0021-9150(00)00515-3Suche in Google Scholar
Kalinina, N., Agrotis, A., Tararak, E., Antropova, Y., Kanellakis, P., Ilyinskaya, O., Quinn, M.T., Smirnov, V., and Bobik, A. (2002). Cytochrome b558-dependent NAD (P) H oxidase–phox units in smooth muscle and macrophages of atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 22, 2037–2043.10.1161/01.ATV.0000040222.02255.0FSuche in Google Scholar
Karlsson, K., Sandström, J., Edlund, A., and Marklund, S.L. (1994). Turnover of extracellular-superoxide dismutase in tissues. Lab. Invest. 70, 705–710.Suche in Google Scholar
Katsuda, S. and Kaji, T. (2003). Atherosclerosis and extracellular matrix. J. Atheroscler. Thromb. 10, 267–274.10.5551/jat.10.267Suche in Google Scholar
Kautz, L., Gabayan, V., and Wang, X. (2013). Ross R: Atherosclerosis – an inflammatory disease. Cell. Rep. 5, 1.10.1016/j.celrep.2013.11.009Suche in Google Scholar
Kirk, E.A., Dinauer, M.C., Rosen, H., Chait, A., Heinecke, J.W., and LeBoeuf, R.C. (2000). Impaired superoxide production due to a deficiency in phagocyte NADPH oxidase fails to inhibit atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 20, 1529–1535.10.1161/01.ATV.20.6.1529Suche in Google Scholar
Kisucka, J., Chauhan, A.K., Patten, I.S., Yesilaltay, A., Neumann, C., Van Etten, R.A., Krieger, M., and Wagner, D.D. (2008). Peroxiredoxin1 prevents excessive endothelial activation and early atherosclerosis. Circ. Res. 103, 598–605.10.1161/CIRCRESAHA.108.174870Suche in Google Scholar
Klebanoff, S.J., Waltersdorph, A.M., and Rosen, H. (1984). [52] Antimicrobial activity of myeloperoxidase. Methods Enzymol. 105, 399–403.10.1016/S0076-6879(84)05055-2Suche in Google Scholar
Kresse, H. and Schönherr, E. (2001). Proteoglycans of the extracellular matrix and growth control. J. Cell. Physiol. 189, 266–274.10.1002/jcp.10030Suche in Google Scholar PubMed
Kutter, D., Devaquet, P., Vanderstocken, G., Paulus, J.-M., Marchal, V., and Gothot, A. (2000). Consequences of total and subtotal myeloperoxidase deficiency: risk or benefit? Acta Haematol. 104, 10–15.10.1159/000041062Suche in Google Scholar PubMed
Landmesser, U., Merten, R., Spiekermann, S., Büttner, K., Drexler, H., and Hornig, B. (2000). Vascular extracellular superoxide dismutase activity in patients with coronary artery disease relation to endothelium-dependent vasodilation. Circulation 101, 2264–2270.10.1161/01.CIR.101.19.2264Suche in Google Scholar
Laukkanen, M.O., Kivelä, A., Rissanen, T., Rutanen, J., Karkkainen, M.K., Leppanen, O., Bräsen, J.H., and Yla-Herttuala, S. (2002). Adenovirus-mediated extracellular superoxide dismutase gene therapy reduces neointima formation in balloon-denuded rabbit aorta. Circulation 106, 1999–2003.10.1161/01.CIR.0000031331.05368.9DSuche in Google Scholar
Laursen, J.B., Somers, M., Kurz, S., McCann, L., Warnholtz, A., Freeman, B.A., Tarpey, M., Fukai, T., and Harrison, D.G. (2001). Endothelial regulation of vasomotion in apoE-deficient mice implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 103, 1282–1288.10.1161/01.CIR.103.9.1282Suche in Google Scholar PubMed
Lennon, S., Martin, S., and Cotter, T. (1991). Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif. 24, 203–214.10.1111/j.1365-2184.1991.tb01150.xSuche in Google Scholar PubMed
Lewis, P., Stefanovic, N., Pete, J., Calkin, A.C., Giunti, S., Thallas-Bonke, V., Jandeleit-Dahm, K.A., Allen, T.J., Kola, I., Cooper, M.E., et al. (2007). Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein e–deficient mice. Circulation 115, 2178–2187.10.1161/CIRCULATIONAHA.106.664250Suche in Google Scholar PubMed
Li, D., Yang, B., and Mehta, J.L. (1998). Ox-LDL induces apoptosis in human coronary artery endothelial cells: role of PKC, PTK, bcl-2, and Fas. Am. J. Physiol. Heart Circ. Physiol. 275, H568–H576.10.1152/ajpheart.1998.275.2.H568Suche in Google Scholar PubMed
Li, D., Liu, L., Chen, H., Sawamura, T., and Mehta, J.L. (2003). LOX-1, an oxidized LDL endothelial receptor, induces CD40/CD40L signaling in human coronary artery endothelial cells. Arterioscler. Thromb. Vasc. Biol. 23, 816–821.10.1161/01.ATV.0000066685.13434.FASuche in Google Scholar PubMed
Liu, M.-E., Liao, Y.-C., Lin, R.-T., Wang, Y.-S., Hsi, E., Lin, H.-F., Chen, K.-C., and Juo, S.-H.H. (2013). A functional polymorphism of PON1 interferes with microRNA binding to increase the risk of ischemic stroke and carotid atherosclerosis. Atherosclerosis 228, 161–167.10.1016/j.atherosclerosis.2013.01.036Suche in Google Scholar PubMed
Mackness, B., Durrington, P., McElduff, P., Yarnell, J., Azam, N., Watt, M., and Mackness, M. (2003). Low paraoxonase activity predicts coronary events in the Caerphilly Prospective Study. Circulation 107, 2775–2779.10.1161/01.CIR.0000070954.00271.13Suche in Google Scholar PubMed
Maddox, J.F. and Serhan, C.N. (1996). Lipoxin A4 and B4 are potent stimuli for human monocyte migration and adhesion: selective inactivation by dehydrogenation and reduction. J. Exp. Med. 183, 137–146.10.1084/jem.183.1.137Suche in Google Scholar PubMed PubMed Central
Maier, W., Cosentino, F., Lütolf, R.B., Fleisch, M., Seiler, C., Hess, O.M., Meier, B., and Lüscher, T.F. (2000). Tetrahydrobiopterin improves endothelial function in patients with coronary artery disease. J. Cardiovasc. Pharmacol. 35, 173–178.10.1097/00005344-200002000-00001Suche in Google Scholar
Mallika, V., Goswami, B., and Rajappa, M. (2007). Atherosclerosis pathophysiology and the role of novel risk factors: a clinicobiochemical perspective. Angiology 58, 513–522.10.1177/0003319707303443Suche in Google Scholar
Manach, C., Mazur, A., and Scalbert, A. (2005). Polyphenols and prevention of cardiovascular diseases. Curr. Opin. Lipidol. 16, 77–84.10.1097/00041433-200502000-00013Suche in Google Scholar
Marczell, I., Stark, J., Heinle, H., Pazmany, T., Szombath, D., Dinya, M., Tulassay, Z., Racz, K., Szekacs, B., Farkas, A., et al. (2014). Myeloperoxidase inhibitors enhance aortic atherosclerosis in an animal model. Atherosclerosis 235, e269.10.1016/j.atherosclerosis.2014.05.806Suche in Google Scholar
Marsillach, J., Camps, J., Beltran-Debón, R., Rull, A., Aragones, G., Maestre-Martínez, C., Sabench, F., Hernández, M., Castillo, D.D., Joven, J., et al. (2011). Immunohistochemical analysis of paraoxonases-1 and 3 in human atheromatous plaques. Eur.J. Clin. Invest. 41, 308–314.10.1111/j.1365-2362.2010.02411.xSuche in Google Scholar
Martindale, J.L. and Holbrook, N.J. (2002). Cellular response to oxidative stress: signaling for suicide and survival. J. Cell. Physiol. 192, 1–15.10.1002/jcp.10119Suche in Google Scholar
McNally, J.S., Davis, M.E., Giddens, D.P., Saha, A., Hwang, J., Dikalov, S., Jo, H., and Harrison, D.G. (2003). Role of xanthine oxidoreductase and NAD (P) H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am. J. Physiol. Heart Circ. Physiol. 285, H2290–H2297.10.1152/ajpheart.00515.2003Suche in Google Scholar
Merle, B., Durussel, L., Delmas, P.D., and Clézardin, P. (1999). Decorin inhibits cell migration through a process requiring its glycosaminoglycan side chain. J. Cell. Biochem. 75, 538–546.10.1002/(SICI)1097-4644(19991201)75:3<538::AID-JCB17>3.0.CO;2-YSuche in Google Scholar
Meuwese, M.C., Trip, M.D., van Wissen, S., van Miert, J.N., Kastelein, J.J., and Stroes, E.S. (2008). Myeloperoxidase levels are not associated with carotid atherosclerosis progression in patients with familial hypercholesterolemia. Atherosclerosis 197, 916–921.10.1016/j.atherosclerosis.2007.08.011Suche in Google Scholar
Meyer, D.F., Nealis, A.S., MacPhee, C.H., Groot, P.H., Keith, E., Bruckdorfer, K.R., and Perkins, S.J. (1996). Time-course studies by synchrotron X-ray solution scattering of the structure of human low-density lipoprotein during Cu2+-induced oxidation in relation to changes in lipid composition. Biochem. J. 319, 217–227.10.1042/bj3190217Suche in Google Scholar
Meyers, D.G., Maloley, P.A., and Weeks, D. (1996). Safety of antioxidant vitamins. Arch. Intern. Med. 156, 925–935.10.1001/archinte.1996.00440090015002Suche in Google Scholar
Miller, E.R., Pastor-Barriuso, R., Dalal, D., Riemersma, R.A., Appel, L.J., and Guallar, E. (2005). Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann. Intern. Med. 142, 37–46.10.7326/0003-4819-142-1-200501040-00110Suche in Google Scholar PubMed
Moat, S.J., Clarke, Z.L., Madhavan, A.K., Lewis, M.J., and Lang, D. (2006). Folic acid reverses endothelial dysfunction induced by inhibition of tetrahydrobiopterin biosynthesis. Eur. J. Pharmacol. 530, 250–258.10.1016/j.ejphar.2005.11.047Suche in Google Scholar PubMed
Moon, E.-Y., Noh, Y.-W., Han, Y.-H., Kim, S.-U., Kim, J.-M., Yu, D.-Y., and Lim, J.-S. (2006). T lymphocytes and dendritic cells are activated by the deletion of peroxiredoxin II (Prx II) gene. Immunol. Lett. 102, 184–190.10.1016/j.imlet.2005.09.003Suche in Google Scholar PubMed
Moore, K.J., Kunjathoor, V.V., Koehn, S.L., Manning, J.J., Tseng, A.A., Silver, J.M., McKee, M., and Freeman, M.W. (2005). Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J. Clin. Invest. 115, 2192–2201.10.1172/JCI24061Suche in Google Scholar PubMed PubMed Central
Mowbray, A.L., Kang, D.-H., Rhee, S.G., Kang, S.W., and Jo, H. (2008). Laminar shear stress up-regulates peroxiredoxins (PRX) in endothelial cells PRX 1 as a mechanosensitive antioxidant. J. Biol. Chem. 283, 1622–1627.10.1074/jbc.M707985200Suche in Google Scholar PubMed
Mügge, A., Brandes, R., Böger, R., Dwenger, A., Bode-Böger, S., Kienke, S., Frölich, J., and Lichtlen, P. (1994). Vascular release of superoxide radicals is enhanced in hypercholesterolemic rabbits. J. Cardiovasc. Pharmacol. 24, 994–998.10.1097/00005344-199424060-00019Suche in Google Scholar PubMed
Muller, F. (2000). The nature and mechanism of superoxide production by the electron transport chain: its relevance to aging. J Am Aging Assoc 23, 227–253.10.1007/s11357-000-0022-9Suche in Google Scholar PubMed PubMed Central
Najafi, M. and Alipoor, B. (2013). Serum ox-LDL level is reduced with the extent of stenosis in coronary arteries. Acta Medica. Iranica. 51, 314–319.Suche in Google Scholar
Najafi, M. and Mohammadi, P. (2015). System study of MPO promoter high-frequency polymorphic variants on transcription factor network. Gene 560, 143–148.10.1016/j.gene.2015.01.055Suche in Google Scholar PubMed
Najafi, M., Hosseini Gohari, L., Firoozrai, M., Zavarehee, A., and Basiri, H. (2008). Association between paraoxonase-1 gene promoter T (-107) C polymorphism and coronary artery disease. Iran. J. Public Health 37, 108–113.Suche in Google Scholar
Najafi, M., Gohari, L.H., and Firoozrai, M. (2009). Paraoxonase 1 gene promoter polymorphisms are associated with the extent of stenosis in coronary arteries. Thromb. Res. 123, 503–510.10.1016/j.thromres.2008.03.004Suche in Google Scholar PubMed
Najafi, M., Roustazadeh, A., and Alipoor, B. (2011a). Ox-LDL particles: modified components, cellular uptake, biological roles and clinical assessments. Cardiovasc. Haematol. Disord. Drug Targets 11, 119–128.10.2174/187152911798346990Suche in Google Scholar
Najafi, M., Zohreh, J., and Behnam, A. (2011b). Human PON promoters: From similarity to prediction of polymorphic positions within transcription factor elements. Clin. Biochem. 13, S101.10.1016/j.clinbiochem.2011.08.235Suche in Google Scholar
Najafi, M., Alipoor, B., Shabani, M., Amirfarhangi, A., and Ghasemi, H. (2012a). Association between rs4673 (C/T) and rs13306294 (A/G) haplotypes of NAD (P) H oxidase p22phox gene and severity of stenosis in coronary arteries. Gene 499, 213–217.10.1016/j.gene.2012.02.032Suche in Google Scholar
Najafi, M., Ghasemi, H., Roustazadeh, A., and Alipoor, B. (2012b). Phenotype and genotype relationship of glutathione peroxidase1 (GPx1) and rs 1800668 variant: the homozygote effect on kinetic parameters. Gene 505, 19–22.10.1016/j.gene.2012.05.057Suche in Google Scholar
Nakashima, Y., Fujii, H., Sumiyoshi, S., Wight, T.N., and Sueishi, K. (2007). Early human atherosclerosis accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arterioscler. Thromb. Vasc. Biol. 27, 1159–1165.10.1161/ATVBAHA.106.134080Suche in Google Scholar
Nathan, C. and Shiloh, M.U. (2000). Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 97, 8841–8848.10.1073/pnas.97.16.8841Suche in Google Scholar
Navab, M., Fogelman, A.M., Berliner, J.A., Territo, M.C., Demer, L.L., Frank, J.S., Watson, A.D., Edwards, P.A., and Lusis, A.J. (1995). Pathogenesis of atherosclerosis. Am. J. Cardiol. 76, 18C–23C.10.1016/S0002-9149(99)80466-4Suche in Google Scholar
Navab, M., Ananthramaiah, G., Reddy, S.T., Van Lenten, B.J., Ansell, B.J., Fonarow, G.C., Vahabzadeh, K., Hama, S., Hough, G., Kamranpour, N., et al. (2004). Thematic review series: the pathogenesis of atherosclerosis the oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J. Lipid Res. 45, 993–1007.10.1194/jlr.R400001-JLR200Suche in Google Scholar PubMed
Ng, D.S., Chu, T., Esposito, B., Hui, P., Connelly, P.W., and Gross, P.L. (2008). Paraoxonase-1 deficiency in mice predisposes to vascular inflammation, oxidative stress, and thrombogenicity in the absence of hyperlipidemia. Cardiovasc. Pathol. 17, 226–232.10.1016/j.carpath.2007.10.001Suche in Google Scholar PubMed
Nicholls, S.J., Tuzcu, E.M., Kalidindi, S., Wolski, K., Moon, K.-W., Sipahi, I., Schoenhagen, P., and Nissen, S.E. (2008). Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling: a pooled analysis of 5 intravascular ultrasound trials. J. Am. Coll. Cardiol. 52, 255–262.10.1016/j.jacc.2008.03.051Suche in Google Scholar PubMed
Nikpoor, B., Turecki, G., Fournier, C., Théroux, P., and Rouleau, G.A. (2001). A functional myeloperoxidase polymorphic variant is associated with coronary artery disease in French-Canadians. Am. Heart J. 142, 336–339.10.1067/mhj.2001.116769Suche in Google Scholar PubMed
Nishino, T., Okamoto, K., Eger, B.T., Pai, E.F., and Nishino, T. (2008). Mammalian xanthine oxidoreductase–mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J. 275, 3278–3289.10.1111/j.1742-4658.2008.06489.xSuche in Google Scholar PubMed
Nonaka, H., Tsujino, T., Watari, Y., Emoto, N., and Yokoyama, M. (2001). Taurine prevents the decrease in expression and secretion of extracellular superoxide dismutase induced by homocysteine. Circulation 104, 1165–1170.10.1161/hc3601.093976Suche in Google Scholar PubMed
Nunomura, A., Castellani, R.J., Zhu, X., Moreira, P.I., Perry, G., and Smith, M.A. (2006). Involvement of oxidative stress in Alzheimer disease. J. Neuropathol. Exp. Neurol. 65, 631–641.10.1097/01.jnen.0000228136.58062.bfSuche in Google Scholar PubMed
O’Donnell, V.B., Eiserich, J.P., Chumley, P.H., Jablonsky, M.J., Krishna, N.R., Kirk, M., Barnes, S., Darley-Usmar, V.M., Freeman, B.A. (1999). Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion. Chem. Res. Toxicol. 12, 83–92.10.1021/tx980207uSuche in Google Scholar PubMed
O’Brien, K.D. (2006). Pathogenesis of calcific aortic valve disease a disease process comes of age (and a good deal more). Arterioscler. Thromb. Vasc. Biol. 26, 1721–1728.10.1161/01.ATV.0000227513.13697.acSuche in Google Scholar PubMed
O’Brien, K.D., Olin, K.L., Alpers, C.E., Chiu, W., Ferguson, M., Hudkins, K., Wight, T.N., and Chait, A. (1998). Comparison of apolipoprotein and proteoglycan deposits in human coronary atherosclerotic plaques colocalization of biglycan with apolipoproteins. Circulation 98, 519–527.10.1161/01.CIR.98.6.519Suche in Google Scholar
Oda, M.N., Bielicki, J.K., Ho, T.T., Berger, T., Rubin, E.M., and Forte, T.M. (2002). Paraoxonase 1 overexpression in mice and its effect on high-density lipoproteins. Biochem. Biophys. Res. Commun. 290, 921–927.10.1006/bbrc.2001.6295Suche in Google Scholar PubMed
Ohara, Y., Peterson, T.E., and Harrison, D.G. (1993). Hypercholesterolemia increases endothelial superoxide anion production. J. Clin. Invest. 91, 2546.10.1172/JCI116491Suche in Google Scholar PubMed PubMed Central
Oury, T.D., Day, B.J., and Crapo, J.D. (1996). Extracellular superoxide dismutase: a regulator of nitric oxide bioavailability. Lab. Invest. 75, 617–636.Suche in Google Scholar
Pacher, P., Beckman, J.S., and Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315–424.10.1152/physrev.00029.2006Suche in Google Scholar PubMed PubMed Central
Park, J.-G. and Oh, G.-T. (2011). The role of peroxidases in the pathogenesis of atherosclerosis. BMB Rep. 44, 497–505.10.5483/BMBRep.2011.44.8.497Suche in Google Scholar PubMed
Park, J.-G., Yoo, J.-Y., Jeong, S.-J., Choi, J.-H., Lee, M.-R., Lee, M.-N., Lee, J.H., Kim, H.C., Jo, H., Yu, D.-Y., et al. (2011). Peroxiredoxin 2 Deficiency Exacerbates Atherosclerosis in Apolipoprotein E–Deficient MiceNovelty and Significance. Circ. Res. 109, 739–749.10.1161/CIRCRESAHA.111.245530Suche in Google Scholar PubMed PubMed Central
Patel, V.P. and Chu, C.T. (2011). Nuclear transport, oxidative stress, and neurodegeneration. Int. J. Clin. Exp. Pathol. 4, 215–229.Suche in Google Scholar
Pauly, N., Pucciariello, C., Mandon, K., Innocenti, G., Jamet, A., Baudouin, E., Hérouart, D., Frendo, P., and Puppo, A. (2006). Reactive oxygen and nitrogen species and glutathione: key players in the legume–Rhizobium symbiosis. J. Exp. Bot. 57, 1769–1776.10.1093/jxb/erj184Suche in Google Scholar PubMed
Piérola, J., Alemany, A., Yañez, A., de-la-Peña, M., Sánchez-de-la-Torre, M., Esquinas, C., Pérez-Gutierrez, C., Burguera, B., Barbé, F., and Barceló, A., et al. (2011). NADPH oxidase p22phox polymorphisms and oxidative stress in patients with obstructive sleep apnoea. Respir. Med. 105, 1748–1754.10.1016/j.rmed.2011.08.006Suche in Google Scholar PubMed
Podmore, I.D., Griffiths, H.R., Herbert, K.E., Mistry, N., Mistry, P., and Lunec, J. (1998). Vitamin C exhibits pro-oxidant properties. Nature 392, 559–559.10.1038/33308Suche in Google Scholar PubMed
Podrez, E.A., Schmitt, D., Hoff, H.F., and Hazen, S.L. (1999). Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J. Clin. Invest. 103, 1547–1560.10.1172/JCI5549Suche in Google Scholar PubMed PubMed Central
Pratviel, G. (2012). Oxidative DNA damage mediated by transition metal ions and their complexes. Met. Ions. Life. Sci. 10, 201–216.10.1007/978-94-007-2172-2_7Suche in Google Scholar PubMed
Rahman, K. (2007). Studies on free radicals, antioxidants, and co-factors. Clin. Interv. Aging 2, 219.Suche in Google Scholar
Rajavashisth, T., Andalibi, A., Territo, M., Berliner, J., and Navab, M. (1990). Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature 344, 254.10.1038/344254a0Suche in Google Scholar PubMed
Ramalingam, M. and Kim, S.-J. (2012). Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases. J. Neural Transm. 119, 891–910.10.1007/s00702-011-0758-7Suche in Google Scholar PubMed
Rhee, S.G. (2006). H2O2, a necessary evil for cell signaling. Science 312, 1882–1883.10.1126/science.1130481Suche in Google Scholar PubMed
Rhee, S.G., Chae, H.Z., and Kim, K. (2005). Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 38, 1543–1552.10.1016/j.freeradbiomed.2005.02.026Suche in Google Scholar
Rosenblat, M., Volkova, N., Coleman, R., and Aviram, M. (2007). Anti-oxidant and anti-atherogenic properties of liposomal glutathione: studies in vitro, and in the atherosclerotic apolipoprotein E-deficient mice. Atherosclerosis 195, e61–e68.10.1016/j.atherosclerosis.2007.05.012Suche in Google Scholar
Rosenblat, M., Volkova, N., Ward, J., and Aviram, M. (2011). Paraoxonase 1 (PON1) inhibits monocyte-to-macrophage differentiation. Atherosclerosis 219, 49–56.10.1016/j.atherosclerosis.2011.06.054Suche in Google Scholar
Rozenberg, O., Shih, D.M., and Aviram, M. (2005). Paraoxonase 1 (PON1) attenuates macrophage oxidative status: studies in PON1 transfected cells and in PON1 transgenic mice. Atherosclerosis 181, 9–18.10.1016/j.atherosclerosis.2004.12.030Suche in Google Scholar
Ruano-Ravina, A., Figueiras, A., Freire-Garabal, M., and Barros-Dios, J. (2006). Antioxidant vitamins and risk of lung cancer. Curr. Pharm. Des. 12, 599–613.10.2174/138161206775474396Suche in Google Scholar
Sahoo, S., Meijles, D.N., and Pagano, P.J. (2016). NADPH oxidases: key modulators in aging and age-related cardiovascular diseases? Clin. Sci. 130, 317–335.10.1042/CS20150087Suche in Google Scholar
Salganik, R.I. (2001). The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population. J Am Coll Nutr 20 (Suppl. 5), 464S–472S.10.1080/07315724.2001.10719185Suche in Google Scholar
Salisbury, B. and Wagner, W. (1981). Isolation and preliminary characterization of proteoglycans dissociatively extracted from human aorta. J. Biol. Chem. 256, 8050–8057.10.1016/S0021-9258(18)43386-8Suche in Google Scholar
Schoen, F.J. and Cotran, R.S. (1999). Blood vessels. In: Robbins Pathologic Basis of Disease, 6th ed., R.S. Cotran, V. Kumar and T. Collins, eds. (Philadelphia: W.B. Saunders Company), pp. 493–541.Suche in Google Scholar
Schönherr, E., Sunderkötter, C., Iozzo, R.V., and Schaefer, L. (2005). Decorin, a novel player in the insulin-like growth factor system. J. Biol. Chem. 280, 15767–15772.10.1074/jbc.M500451200Suche in Google Scholar PubMed
Scott, J. (2002). The pathogenesis of atherosclerosis and new opportunities for treatment and prevention. J. Neural. Transm. Suppl. 1–17.10.1007/978-3-7091-6137-1_1Suche in Google Scholar PubMed
Segal, A.W. (2005). How neutrophils kill microbes. Annu. Rev. Immunol. 23, 197.10.1146/annurev.immunol.23.021704.115653Suche in Google Scholar
Sendobry, S.M., Cornicelli, J.A., Welch, K., Bocan, T., Tait, B., Trivedi, B.K., Colbry, N., Dyer, R.D., Feinmark, S.J., Daugherty, A., et al. (1997). Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties. Br. J. Pharmacol. 120, 1199–1206.10.1038/sj.bjp.0701007Suche in Google Scholar
Sentman, M.-L., Brännström, T., Westerlund, S., Laukkanen, M.O., Ylä-Herttuala, S., Basu, S., and Marklund, S.L. (2001). Extracellular superoxide dismutase deficiency and atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 21, 1477–1482.10.1161/hq0901.094248Suche in Google Scholar
Shih, D.M., Gu, L., Xia, Y.-R., Navab, M., Li, W.-F., Hama, S., Castellani, L.W., Furlong, C.E., Costa, L.G., Fogelman, A.M., et al. (1998). Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature 394, 284–287.10.1038/28406Suche in Google Scholar
Shih, D.M., Xia, Y.-R., Wang, X.-P., Miller, E., Castellani, L.W., Subbanagounder, G., Cheroutre, H., Faull, K.F., Berliner, J.A., Witztum, J.L., et al. (2000). Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis. J. Biol. Chem. 275, 17527–17535.10.1074/jbc.M910376199Suche in Google Scholar
Shiomi, T., Tsutsui, H., Matsusaka, H., Murakami, K., Hayashidani, S., Ikeuchi, M., Wen, J., Kubota, T., Utsumi, H., Takeshita, A., et al. (2004). Overexpression of glutathione peroxidase prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation 109, 544–549.10.1161/01.CIR.0000109701.77059.E9Suche in Google Scholar
Sies, H. (1997). Oxidative stress: oxidants and antioxidants. Exp. Physiol. 82, 291–295.10.1113/expphysiol.1997.sp004024Suche in Google Scholar
Sies, H. (1999). Glutathione and its role in cellular functions. Free Radic. Biol. Med. 27, 916–921.10.1016/S0891-5849(99)00177-XSuche in Google Scholar
Sorenson, R.C., Bisgaier, C.L., Aviram, M., Hsu, C., Billecke, S., and La Du, B.N. (1999). Human serum paraoxonase/arylesterase’s retained hydrophobic N-terminal leader sequence associates with HDLs by binding phospholipids. Arterioscler. Thromb. Vasc. Biol. 19, 2214–2225.10.1161/01.ATV.19.9.2214Suche in Google Scholar PubMed
Sorrentino, S.A., Besler, C., Rohrer, L., Meyer, M., Heinrich, K., Bahlmann, F.H., Mueller, M., Horváth, T., Doerries, C., Heinemann, M., et al. (2010). Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation 121, 110–122.10.1161/CIRCULATIONAHA.108.836346Suche in Google Scholar PubMed
Spiekermann, S., Landmesser, U., Dikalov, S., Bredt, M., Gamez, G., Tatge, H., Reepschläger, N., Hornig, B., Drexler, H., Harrison, D.G., et al. (2003). Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease. Circulation 107, 1383–1389.10.1161/01.CIR.0000056762.69302.46Suche in Google Scholar
Squadrito, G.L. and Pryor, W.A. (1998). Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic. Biol. Med. 25, 392–403.10.1016/S0891-5849(98)00095-1Suche in Google Scholar
Stanner, S., Hughes, J., Kelly, C., and Buttriss, J. (2004). A review of the epidemiological evidence for the ‘antioxidant hypothesis’. Public Health Nutr. 7, 407–422.10.1079/PHN2003543Suche in Google Scholar
Stephens, E.H., Saltarrelli, J.G., Baggett, L.S., Nandi, I., Kuo, J.J., Davis, A.R., Olmsted-Davis, E.A., Reardon, M.J., Morrisett, J.D., Grande-Allen, K.J., et al. (2011). Differential proteoglycan and hyaluronan distribution in calcified aortic valves. Cardiovasc. Pathol. 20, 334–342.10.1016/j.carpath.2010.10.002Suche in Google Scholar
Stocker, R. and Keaney, J.F. (2004). Role of oxidative modifications in atherosclerosis. Physiol. Rev. 84, 1381–1478.10.1152/physrev.00047.2003Suche in Google Scholar
Stoclet, J.-C., Chataigneau, T., Ndiaye, M., Oak, M.-H., El Bedoui, J., Chataigneau, M., and Schini-Kerth, V.B. (2004). Vascular protection by dietary polyphenols. Eur. J. Pharmacol. 500, 299–313.10.1016/j.ejphar.2004.07.034Suche in Google Scholar
Strålin, P. and Marklund, S.L. (2000). Multiple cytokines regulate the expression of extracellular superoxide dismutase in human vascular smooth muscle cells. Atherosclerosis 151, 433–441.10.1016/S0021-9150(99)00427-XSuche in Google Scholar
Strålin, P., Karlsson, K., Johansson, B.O., and Marklund, S.L. (1995). The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler. Thromb. Vasc. Biol. 15, 2032–2036.10.1161/01.ATV.15.11.2032Suche in Google Scholar PubMed
Stroes, E., Van Faassen, E., Yo, M., Martasek, P., Boer, P., Govers, R., and Rabelink, T. (2000). Folic acid reverts dysfunction of endothelial nitric oxide synthase. Circ. Res. 86, 1129–1134.10.1161/01.RES.86.11.1129Suche in Google Scholar
Sundaresan, M., Yu, Z.-X., Ferrans, V.J., Irani, K., and Finkel, T. (1995). Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296.10.1126/science.270.5234.296Suche in Google Scholar PubMed
Tappel, A. (1978). [53] Glutathione peroxidase and hydroperoxides. Meth. Enzymol. 52, 506–513.10.1016/S0076-6879(78)52055-7Suche in Google Scholar
Tilton, R.G., Kawamura, T., Chang, K.C., Ido, Y., Bjercke, R.J., Stephan, C.C., Brock, T.A., and Williamson, J.R. (1997). Vascular dysfunction induced by elevated glucose levels in rats is mediated by vascular endothelial growth factor. J. Clin. Invest. 99, 2192.10.1172/JCI119392Suche in Google Scholar PubMed PubMed Central
Torzewski, M. and Lackner, K.J. (2006). Initiation and progression of atherosclerosis–enzymatic or oxidative modification of low-density lipoprotein? Clin. Chem. Lab. Med. 44, 1389–1394.10.1515/CCLM.2006.259Suche in Google Scholar PubMed
Torzewski, M., Ochsenhirt, V., Kleschyov, A.L., Oelze, M., Daiber, A., Li, H., Rossmann, H., Tsimikas, S., Reifenberg, K., Cheng, F., et al. (2007). Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 27, 850–857.10.1161/01.ATV.0000258809.47285.07Suche in Google Scholar PubMed
Ushio-Fukai, M., Alexander, R.W., Akers, M., Yin, Q., Fujio, Y., Walsh, K., and Griendling, K.K. (1999). Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J. Biol. Chem. 274, 22699–22704.10.1074/jbc.274.32.22699Suche in Google Scholar PubMed
Van Etten, R.W., De Koning, E.J., Honing, M.L., Stroes, E.S., Gaillard, C.A., and Rabelink, T.J. (2002). Intensive lipid lowering by statin therapy does not improve vasoreactivity in patients with type 2 diabetes. Arterioscler. Thromb. Vasc. Biol. 22, 799–804.10.1161/01.ATV.0000015330.64968.C4Suche in Google Scholar
Van Lenten, B.J., Wagner, A.C., Nayak, D.P., Hama, S., Navab, M., and Fogelman, A.M. (2001). High-density lipoprotein loses its anti-inflammatory properties during acute influenza a infection. Circulation 103, 2283–2288.10.1161/01.CIR.103.18.2283Suche in Google Scholar
Verhaar, M.C., Wever, R.M., Kastelein, J.J., Van Dam, T., Koomans, H.A., and Rabelink, T.J. (1998). 5-Methyltetrahydrofolate, the active form of folic acid, restores endothelial function in familial hypercholesterolemia. Circulation 97, 237–241.10.1161/01.CIR.97.3.237Suche in Google Scholar
Victor, V.M., Rocha, M., Sola, E., Banuls, C., Garcia-Malpartida, K., and Hernandez-Mijares, A. (2009). Oxidative stress, endothelial dysfunction and atherosclerosis. Curr. Pharm. Des. 15, 2988–3002.10.2174/138161209789058093Suche in Google Scholar PubMed
Von Eckardstein, A., Nofer, J.-R., and Assmann, G. (2001). High density lipoproteins and arteriosclerosis role of cholesterol efflux and reverse cholesterol transport. Arterioscler. Thromb. Vasc. Biol. 21, 13–27.10.1161/01.ATV.21.1.13Suche in Google Scholar
Vora, D.K., Fang, Z.-T., Liva, S.M., Tyner, T.R., Parhami, F., Watson, A.D., Drake, T.A., Territo, M.C., and Berliner, J.A. (1997). Induction of P-selectin by oxidized lipoproteins. Circ. Res. 80, 810–818.10.1161/01.RES.80.6.810Suche in Google Scholar PubMed
Wagner, A.H., Kautz, O., Fricke, K., Zerr-Fouineau, M., Demicheva, E., Güldenzoph, B., Bermejo, J.L., Korff, T., and Hecker, M. (2009). Upregulation of glutathione peroxidase offsets stretch-induced proatherogenic gene expression in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 29, 1894–1901.10.1161/ATVBAHA.109.194738Suche in Google Scholar PubMed
Wang, X., Phelan, S.A., Forsman-Semb, K., Taylor, E.F., Petros, C., Brown, A., Lerner, C.P., and Paigen, B. (2003). Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress. J. Biol. Chem. 278, 25179–25190.10.1074/jbc.M302706200Suche in Google Scholar PubMed
Wang, X., Phelan, S.A., Petros, C., Taylor, E.F., Ledinski, G., Jürgens, G., Forsman-Semb, K., and Paigen, B. (2004). Peroxiredoxin 6 deficiency and atherosclerosis susceptibility in mice: significance of genetic background for assessing atherosclerosis. Atherosclerosis 177, 61–70.10.1016/j.atherosclerosis.2004.06.007Suche in Google Scholar PubMed
Wassmann, S., Wassmann, K., and Nickenig, G. (2004). Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension 44, 381–386.10.1161/01.HYP.0000142232.29764.a7Suche in Google Scholar PubMed
Watson, A.D., Leitinger, N., Navab, M., Faull, K.F., Hörkkö, S., Witztum, J.L., Palinski, W., Schwenke, D., Salomon, R.G., Sha, W., et al. (1997). Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J. Biol. Chem. 272, 13597–13607.10.1074/jbc.272.21.13597Suche in Google Scholar PubMed
Wilcken, D.E., Wang, X.L., Adachi, T., Hara, H., Duarte, N., Green, K., and Wilcken, B. (2000). Relationship between homocysteine and superoxide dismutase in homocystinuria. Arterioscler. Thromb. Vasc. Biol. 20, 1199–1202.10.1161/01.ATV.20.5.1199Suche in Google Scholar PubMed
Wilmink, H.W., Stroes, E.S., Erkelens, W.D., Gerritsen, W.B., Wever, R., Banga, J.-D., and Rabelink, T.J. (2000). Influence of folic acid on postprandial endothelial dysfunction. Arterioscler. Thromb. Vasc. Biol. 20, 185–188.10.1161/01.ATV.20.1.185Suche in Google Scholar PubMed
Winter, J.P., Gong, Y., Grant, P.J., and Wild, C.P. (2003). Glutathione peroxidase 1 genotype is associated with an increased risk of coronary artery disease. Coron. Artery Dis. 14, 149–153.10.1097/00019501-200304000-00007Suche in Google Scholar PubMed
Xaus, J., Comalada, M., Cardó, M., Valledor, A.F., and Celada, A. (2001). Decorin inhibits macrophage colony-stimulating factor proliferation of macrophages and enhances cell survival through induction of p27Kip1 and p21Waf1. Blood 98, 2124–2133.10.1182/blood.V98.7.2124Suche in Google Scholar
Yamamoto, M., Hara, H., and Adachi, T. (2000). Effects of homocysteine on the binding of extracellular-superoxide dismutase to the endothelial cell surface. FEBS Lett. 486, 159–162.10.1016/S0014-5793(00)02260-2Suche in Google Scholar
Yang, C.-S., Lee, D.-S., Song, C.-H., An, S.-J., Li, S., Kim, J.-M., Kim, C.S., Yoo, D.G., Jeon, B.H., Yang, H.-Y., et al. (2007). Roles of peroxiredoxin II in the regulation of proinflammatory responses to LPS and protection against endotoxin-induced lethal shock. J. Exp. Med. 204, 583–594.10.1084/jem.20061849Suche in Google Scholar PubMed PubMed Central
Zhang, R., Brennan, M.-L., Fu, X., Aviles, R.J., Pearce, G.L., Penn, M.S., Topol, E.J., Sprecher, D.L., and Hazen, S.L. (2001). Association between myeloperoxidase levels and risk of coronary artery disease. J. Am. Med. Assoc. 286, 2136–2142.10.1001/jama.286.17.2136Suche in Google Scholar PubMed
Zhang, C., Peng, W., Wang, M., Zhu, J., Zang, Y., Shi, W., Zhang, J., and Qin, J. (2010). Studies on protective effects of human paraoxonases 1 and 3 on atherosclerosis in apolipoprotein E knockout mice. Gene Ther. 17, 626–633.10.1038/gt.2010.11Suche in Google Scholar PubMed
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Unforgettable force – crosstalk and memory of mechanosensitive structures
- Differential expression of DLG1 as a common trait in different human diseases: an encouraging issue in molecular pathology
- The effects of oxidative stress on the development of atherosclerosis
- Research Articles/Short Communications
- Protein Structure and Function
- Kinetically selective and potent inhibitors of HDAC8
- Assay of β-glucosidase 2 (GBA2) activity using lithocholic acid β-3-O-glucoside substrate for cultured fibroblasts and glucosylceramide for brain tissue
- Cell Biology and Signaling
- Changqin NO. 1 inhibits neuronal apoptosis via suppressing GAS5 expression in a traumatic brain injury mice model
- Nm23-H1 inhibits hypoxia induced epithelial-mesenchymal transition and stemness in non-small cell lung cancer cells
- Nodal promotes the malignancy of non-small cell lung cancer (NSCLC) cells via activation of NF-κB/IL-6 signals
- MCT1, MCT4 and CD147 expression and 3-bromopyruvate toxicity in colorectal cancer cells are modulated by the extracellular conditions
- Proteolysis
- Metalloprotease inhibitor profiles of human ADAM8 in vitro and in cell-based assays
Artikel in diesem Heft
- Frontmatter
- Reviews
- Unforgettable force – crosstalk and memory of mechanosensitive structures
- Differential expression of DLG1 as a common trait in different human diseases: an encouraging issue in molecular pathology
- The effects of oxidative stress on the development of atherosclerosis
- Research Articles/Short Communications
- Protein Structure and Function
- Kinetically selective and potent inhibitors of HDAC8
- Assay of β-glucosidase 2 (GBA2) activity using lithocholic acid β-3-O-glucoside substrate for cultured fibroblasts and glucosylceramide for brain tissue
- Cell Biology and Signaling
- Changqin NO. 1 inhibits neuronal apoptosis via suppressing GAS5 expression in a traumatic brain injury mice model
- Nm23-H1 inhibits hypoxia induced epithelial-mesenchymal transition and stemness in non-small cell lung cancer cells
- Nodal promotes the malignancy of non-small cell lung cancer (NSCLC) cells via activation of NF-κB/IL-6 signals
- MCT1, MCT4 and CD147 expression and 3-bromopyruvate toxicity in colorectal cancer cells are modulated by the extracellular conditions
- Proteolysis
- Metalloprotease inhibitor profiles of human ADAM8 in vitro and in cell-based assays