Startseite Lebenswissenschaften Potential importance of Maackia amurensis agglutinin in non-small cell lung cancer
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Potential importance of Maackia amurensis agglutinin in non-small cell lung cancer

Ein Erratum zu diesem Artikel finden Sie hier: https://doi.org/10.1515/hsz-2015-0237
  • Sangeeta Mehta , Rakhee Chhetra , Radhika Srinivasan , Suresh C. Sharma , Digambar Behera und Sujata Ghosh EMAIL logo
Veröffentlicht/Copyright: 24. März 2013

Abstract

Maackia amurensis agglutinin is a NeuNAcα (2–3) Galβ (1–4) GlcNAc/Glc-specific lectin, which was shown to have diagnostic potential in cancers of different origin. In a previous report, we demonstrated that GM3 specific IgG from bronchoalveolar lavage fluid (BALF) of non-small cell lung cancer (NSCLC) patients interacted with ∼66kDa membrane glycoprotein band of NSCLC cell lines, which was also recognised by this lectin. This observation prompted us to assess the potential of Maackia amurensis agglutinin in NSCLC. Accordingly, we examined the reactivity of this lectin with NSCLC cell lines as well as the tissue biopsies and cells obtained from fine needle aspirations of NSCLC patients. Maackia amurensis agglutinin showed strong reactivity, specifically with cells and biopsy samples of NSCLC origin. Furthermore, this lectin was found to induce apoptosis in NSCLC cells. The mechanism of this lectin-induced apoptosis involved downregulation of Bcl-XL, upregulation of Bax, release of cytochrome c and activation of procaspase-3. Collectively our results have suggested that Maackia amurensis agglutinin may have the potential to serve as a unique probe for detection of NSCLC and also as a specific apoptosis-inducing agent in NSCLC cells.


Corresponding author: Sujata Ghosh, Postgraduate Institute of Medical Education and Research (PGIMER), Department of Experimental Medicine and Biotechnology, Chandigarh 160012, India

This work was supported by a grant from the Indian Council of Medical Research, New Delhi, India.

References

Allam, M., Bertrand, R., Zhang-Sun, G., Pappas, J., and Viallet, J. (1997). Cholera toxin triggers apoptosis in human lung cancer cell lines. Cancer Res. 57, 2615–2618.Suche in Google Scholar

Arab, M.R., Salari, S., Karimi, M., and Mofidpour, H. (2010). Lectin histochemical study of cell surface glycoconjugate in gastric carcinoma using Helix pomatia agglutinin. Acta Med Iran. 48, 209–213.Suche in Google Scholar

Arnold, J.N., Saldova, R., Galligan, M.C., Murphy, T.B., Mimura-Kimura, Y., Telford, J.E., Godwin, A.K., and Rudd, P.M. (2011). Novel glycan biomarkers for the detection of lung cancer. J. Proteome Res. 10, 1755–1764.10.1021/pr101034tSuche in Google Scholar

Behera, D. (2007). New approach to the treatment of lung cancer: the molecular targeted therapy. Indian J. Chest Dis. Allied Sci. 49, 149–158.Suche in Google Scholar

De Lima, A.L., Cavalcanti, C.C., Silva, M.C., Paiva, P.M., Coelho, L.C., Beltrao, E.I., and dos S Correia, M.T. (2010). Histochemical evaluation of human prostatic tissues with Cratylia mollis seed lectin. J. Biomed. Biotechnol. 2010, 1–6.10.1155/2010/179817Suche in Google Scholar

De Mejia, E.G., and Prisecaru, V.I. (2005). Lectins as bioactive plant proteins: a potential in cancer treatment. Crit. Rev. Food Sci. Nutr. 45, 425–445.10.1080/10408390591034445Suche in Google Scholar

Fang, E.F., Zhang, C.Z.Y., Ng, T.B., Wong, J.H., Pan, W.L., Ye, X.J., Chan, Y.S., and Fong, W.P. (2012). Momordica charantia lectin, a type II ribosome inactivating protein, exhibits antitumor activity toward human nasopharyngeal carcinoma cells in vitro and in vivo. Cancer Prev. Res. 5, 109–121.10.1158/1940-6207.CAPR-11-0203Suche in Google Scholar

Fukasawa, T., Asao, T., Yamauchi, H., Ide, M., Tabe, Y., Fuiji, T., Yamaguchi, S., Tsutsumi, S., Yazawa, S., and Kuwano, H. (2013). Associated expression of α2,3 sialylated type 2 chain structures with lymph node metastasis in distal colorectal cancer. Surg. Today 43, 155–162.10.1007/s00595-012-0141-9Suche in Google Scholar

Gao, W.M., Mady, H.H., Yu, G.Y., Siegfried, J.M., Luketich, J.D., Melhem, M.F., and Keohayong, P. (2003). Comparison of p53 mutations between adenocarcinoma and squamous cell carcinoma of the lung: unique spectra involving G to A transitions and G to T transversions in both histologic types. Lung Cancer 40, 141–150.10.1016/S0169-5002(03)00035-7Suche in Google Scholar

Gomes, C.C., Bernardes, V.F., Diniz, M.G., Marco, L.D., and Gomez, R.S. (2012). Anti-apoptotic gene transcription signature of salivary gland neoplasms. BMC Cancer 12, 61–66.10.1186/1471-2407-12-61Suche in Google Scholar

Gross, A., McDonnell, J.M., and Korsmeyer, S.J. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899–1911.10.1101/gad.13.15.1899Suche in Google Scholar

Gustafsson, A.B., and Gottlieb R.A. (2007). Bcl-2 family members and apoptosis, taken to heart. Am. J. Physiol. Cell Physiol. 292, C45–C51.10.1152/ajpcell.00229.2006Suche in Google Scholar

Hanahan, D., and Weinberg, R.A. (2000). The hallmark of cancer. Cell 100, 57–70.10.1016/S0092-8674(00)81683-9Suche in Google Scholar

Hovelmann, S., Beckers, T.L., and Schmidt, M. (2004). Molecular alterations in apoptotic pathways after PKB/Akt-mediated chemoresistance in NCI H460 cells. Br. J. Cancer 90, 2370–2377.10.1038/sj.bjc.6601876Suche in Google Scholar PubMed PubMed Central

Hu, R., Zhai, Q., Liu, W., and Liu, X. (2001). An insight into the mechanism of cytotoxicity of ricin to hepatoma cell: roles of BCl-2 family proteins, caspases, Ca(2+)-dependent proteases and protein kinase C. J. Cell Biochem. 81, 583–593.10.1002/jcb.1076Suche in Google Scholar PubMed

Huang, L.H., Yan, Q.J., Kopparapu, N.K., Jiang, Z.Q., and Sun, Y. (2012). Astragalus membranaceus lectin (AML) induces caspase-dependent apoptosis in human leukemia cells. Cell Prolif. 45, 15–21.10.1111/j.1365-2184.2011.00800.xSuche in Google Scholar PubMed PubMed Central

Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., and Forman, D. (2011). Global cancer statistics. CA. Cancer J. Clin. 61, 69–90.10.3322/caac.20107Suche in Google Scholar PubMed

Kapoor, S., Marwaha, R., Majumda, R.S., and Ghosh, S. (2008). Apoptosis induction by Maackia amurensis agglutinin in childhood acute lymphoblastic leukemic cells. Leuk. Res. 32, 559–567.10.1016/j.leukres.2007.08.007Suche in Google Scholar PubMed

Kayser, K., Zink, S., Andre, S., Schuring, M.P., Hecker, E., Klar, E., Bovin, N.V., Kaltner, H., and Gabius, H.J. (2002). Primary colorectal carcinomas and their intrapulmonary metastases: clinical, glyco-, immuno- and lectin histochemical, nuclear and syntactic structure analysis with emphasis on correlation with period of occurrence of metastases and survival. APMIS 110, 435–446.10.1034/j.1600-0463.2002.100601.xSuche in Google Scholar PubMed

Khil, L.Y., Kim, W., Lyu, S., Park, W.B., Yoon, J.W., and Jun, H.S. (2007). Mechanisms involved in Korean mistletoe lectin-induced apoptosis of cancer cells. World J. Gastroenterol. 13, 2811–2818.10.3748/wjg.v13.i20.2811Suche in Google Scholar PubMed PubMed Central

Kim, W.H., Park, W.B., Gao, B., and Jung, M.H. (2004). Critical role of reactive oxygen species and mitochondrial membrane potential in Korean mistletoe lectin-induced apoptosis in human hepatocarcinoma cells. Mol. Pharmacol. 66, 1383–1396.10.1124/mol.104.001347Suche in Google Scholar PubMed

Ku, T.K., Nguyen, D.C., Karaman, M., Gill, P., Hacia, J.G., and Crowe, D.L. (2007). Loss of p53 expression correlates with metastatic phenotype and transcriptional profile in a new mouse model of head and neck cancer. Mol. Cancer Res. 5, 351–362.10.1158/1541-7786.MCR-06-0238Suche in Google Scholar PubMed

Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–68510.1038/227680a0Suche in Google Scholar PubMed

Lei, H.Y., and Chang, C.P. (2009). Lectin of Concanavalin A as an anti-hepatoma therapeutic agent. J. Biomed. Sci. 16, 10–21.10.1186/1423-0127-16-10Suche in Google Scholar

Liu, B., Cheng, Y., Bian, H.J. and Bao, J.K. (2009). Molecular mechanisms of Polygonatum cyrtonema lectin-induced apoptosis and autophagy in cancer cells. Autophagy 5, 253–255.10.4161/auto.5.2.7561Suche in Google Scholar

Lopez-Morales, D., Reyes-Leyva, J., Santos-Lopez, G., Zenteno, E. and Vallejo-Ruiz, V. (2010). Increased expression of sialic acid in cervical biopsies with squamous intraepithelial lesions. Diagn. Pathol. 5, 74–78.10.1186/1746-1596-5-74Suche in Google Scholar

Lyu, S.Y., Choi, S.H., and Park, W.B. (2002). Korean mistletoe lectin-induced apoptosis in hepatocarcinoma cells controlled pathway independent of p53. Arch. Pharm. Res. 25, 93–101.10.1007/BF02975269Suche in Google Scholar

Mehta, S., Chhetra, R., Srinivasan, R., Sharma, S.C., Behera, D., and Ghosh S. (2010). Detection of disease specific sialoglycoconjugate specific antibodies in bronchoalveolar lavage fluid of non-small cell lung cancer patients. Glycoconj. J. 27, 491–500.10.1007/s10719-010-9294-1Suche in Google Scholar

Narayanan, S., Surolia, A., and Karande, A.A. (2004). Ribosome inactivating protein and apoptosis: abrin causes cell death via mitochondrial pathway in jurkat cells. Biochem. J. 377, 233–240.10.1042/bj20030797Suche in Google Scholar

Ogawa, J.I., Inoue, H., and Koide, S. (1997). Alpha-2,3-Sialyltransferase type 3N and α-1,3-fucosyltransferase type VII are related to sialyl Lewisx synthesis and patient survival from lung carcinoma. Cancer 79, 1678–1685.10.1002/(SICI)1097-0142(19970501)79:9<1678::AID-CNCR7>3.0.CO;2-8Suche in Google Scholar

Ohyama, C., Hosono, M., Nitta, K., Oh-eda, M., Yoshikawa, K., Habuchi, T., Arai, Y., and Fukada, M. (2004). Carbohydrate structure and differential binding of prostate specific antigen to Maackia amurensis lectin between prostate cancer and benign prostate hypertrophy. Glycobiology 14, 671–679.10.1093/glycob/cwh071Suche in Google Scholar

Perez-Garay, M., Arteta, B., Pages, L., de Llorens, R., de Bolos, C., Vidal-Vanaclocha, F., and Peracaula, R. (2010). α2,3-Sialyltransferase ST3Gal III modulates pancreatic cancer cell motility and adhesion in vitro and enhances its metastatic potential in vivo. PLoS One 5, e12524.10.1371/journal.pone.0012524Suche in Google Scholar

Ramalingam, S.S., Owonikoko T.K., and Khuri, F.R. (2011). Lung cancer: new biological insights and recent therapeutic advances. CA Cancer J. Clin. 61, 91–112.10.3322/caac.20102Suche in Google Scholar

Rao, P.V., Jayaraj, R., Bhaskar, A.S., Kumar, O., Bhattacharya, R., Saxena, P., Dash, P.K., and Vijayaraghavan, R. (2005). Mechanism of ricin-induced apoptosis in human cervical cancer cells. Biochem. Pharmacol. 69, 855–865.10.1016/j.bcp.2004.11.010Suche in Google Scholar PubMed

Reis, C.A., Osorio, H., Silva, L., Gomes, C., and David, L. (2010). Alterations in glycosylation as biomarkers for cancer detection. J. Clin. Pathol. 63, 322–329.10.1136/jcp.2009.071035Suche in Google Scholar PubMed

Scagliotti, G.V., Novello, S., and Selvaggi, G. (1999). Multi-drug resistance in NSCLC. Ann. Oncol. 10, S83–S86.Suche in Google Scholar

Shabnam, M.S., Srinivasan, R., Wali, A., Majumdar, S., Joshi, K., and Behera D. (2004). Expression of p53 protein and the apoptotic regulatory molecules Bcl-2, Bcl-XL, and Bax in locally advanced squamous cell carcinoma of the lung. Lung Cancer 45, 181–188.10.1016/j.lungcan.2004.01.021Suche in Google Scholar PubMed

Tang, W., Mafune, K., Nakata, M., Konishi, T., Kojima, N., Mizuochi, T., and Makuuchi, M. (2003). Association of histochemical expression of Maackia amurensis lekoagglutinin-positive glycoconjugates with behavior of human gastric cancer. Histopathology 42, 239–245.10.1046/j.1365-2559.2003.01557.xSuche in Google Scholar PubMed

Tang, W., Guo, Q., Usuda, M., Kokudo, N., Seyama, Y., Minagawa, M., Sugawara, Y., Nakata, M., Kojima, N., and Makuuchi, M. (2005). Histochemical expression of sialoglycoconjugates in carcinoma of the papilla of Vater. Hepatogastroenterology 52, 67–71.Suche in Google Scholar

Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.10.1073/pnas.76.9.4350Suche in Google Scholar PubMed PubMed Central

Valadez-Vega, C., Alvarez-Manilla, G., Riveron-Negrete, L., Garcia-Carranca, A., Morales-Gonzalez, J.A., Zuniga-Perez, C., Madrigal-Santillan, E., Esquivel-Soto, J., Esquivel-Chirino, C., Villagomez-Ibarra, R., et al. (2011). Detection of Cytotoxic activity of lectin on human colon adenocarcinoma (Sw480) and epithelial cervical Carcinoma (C33-A). Molecules 16, 2107–2118.10.3390/molecules16032107Suche in Google Scholar PubMed PubMed Central

Wang, Q.Y., Wu, S.L., Chen, J.H., Liu, F., and Chen H.L. (2003). Expressions of Lewis antigens in human non-small cell pulmonary cancer and primary liver cancer with different pathological conditions. J. Exp. Clin. Cancer Res. 22, 431–440.Suche in Google Scholar

Wang, S.Y., Yu, Q.J., Bao, J.K., and Liu, B. (2011). Polygonatum crytonema lectin, a potential antineoplastic drug targeting programmed cell death pathways. Biochem. Biophys. Res. Commun. 406, 497–500.10.1016/j.bbrc.2011.02.049Suche in Google Scholar PubMed

Yang, N., Tong, X., Xiang, Y., Zhang, Y., Liang, Y., Sun, H., and Wang, D.C. (2005). Molecular character of the recombinant antitumor lectin from the edible mushroom Agrocybe aegerita. J. Biochem. 138, 145–150.10.1093/jb/mvi109Suche in Google Scholar PubMed

Yip, K.W., and Reed, J.C. (2008). Bcl-2 family proteins and cancer. Oncogene 27, 6398–6406.10.1038/onc.2008.307Suche in Google Scholar PubMed

Zhao, J., Simeone, D.M., Heidt, D., Anderson, M.A., and Lubman, D.M. (2006). Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis: application to pancreatic cancer serum. J. Proteome Res. 5, 1792–1802.10.1021/pr060034rSuche in Google Scholar PubMed

Received: 2012-9-2
Accepted: 2013-3-20
Published Online: 2013-3-24
Published in Print: 2013-7-1

©2013 by Walter de Gruyter Berlin Boston

Heruntergeladen am 31.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2012-0279/html
Button zum nach oben scrollen