Home Kinin B1 receptor gene ablation affects hypothalamic CART productionb
Article
Licensed
Unlicensed Requires Authentication

Kinin B1 receptor gene ablation affects hypothalamic CART productionb

  • Hugo A.M. Torres , Fabiana Louise Motta , Vicencia Micheline Sales , Carolina Batista , Joelcimar M. da Silva , Thiago Vignoli , Gabriela F. Barnabé , Francine O. Goeldner , Vânia D’Almeida , Jackson C. Bittencourt , Rita Sinigaglia-Coimbra , Michael Bader , Luiz Eugênio A.M. Mello and João Bosco Pesquero EMAIL logo
Published/Copyright: March 24, 2013

Abstract

A role for the kinin B1 receptor in energy-homeostatic processes was implicated in previous studies; notably, the studies where kinin B1 receptor knockout mice (B1-/-) were shown to have impaired adiposity, impaired leptin and insulin production, lower feed efficiency, protection from liver steatosis and diet-induced obesity when fed a high fat diet (HFD). In particular, in a model where the B1 receptor is expressed exclusively in the adipose tissue, it rescues the plasma insulin concentration and the weight gain seen in wild type mice. Taking into consideration that leptin participates in the formation of hypothalamic nuclei, which modulate energy expenditure, and feeding behavior, we hypothesized that these brain regions could also be altered in B1-/- mice. We observed for the first time a difference in the gene expression pattern of cocaine and amphetamine related transcript (CART) in the (lateral hypothalamic area (LHA) resulting from the deletion of the kinin B1 receptor gene. The correlation between CART expression in the LHA and the thwarting of diet-induced obesity corroborates independent correlations between CART and obesity. Furthermore, it seems to indicate that the mechanism underlying the ‘lean’ phenotype of B1-/- mice does not stem solely from changes in peripheral tissues but may also receive contributions from changes in the hypothalamic machinery involved in energy homeostasis processes.


Corresponding author: João Bosco Pesquero, Biophysics Department, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669 9oandar, Vila Clementino, 04039-002, Sao Paulo, SP, Brazil

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico Tecnológico (CNPq, 134730/2006-2). HAMT, VD’A, LEM, JCB, and JBP are recipients of fellowships from CNPq, Brazil. GFB and VMS is a recipient of a Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) fellowship. Financial support from FAPESP to JBP (2008)/06676-8) and to JCB (2004)/13849-5) is acknowledged. RSC is a recipient of an Associação Beneficente de Coleta de Sangue/Universidade Federal de São Paulo (COLSAN-UNIFESP) fellowship.

  1. b

    This paper was originally submitted to the Highlight Issue in connection with the ‘Kinin 2012’ symposium (March 2013 issue).

References

Araújo, R.C., Mori, M. A., Merino, V.F., Bascands, J.-L., Schanstra, J.P., Zollner, R.L., Villela, C.A., Nakaie, C.R., Paiva, A.C.M., Pesquero, J.L., et al. (2006). Role of the kinin B1 receptor in insulin homeostasis and pancreatic islet function. Biol. Chem. 387, 431–436.10.1515/BC.2006.057Search in Google Scholar PubMed

Beard, K.M., Lu, H., Ho, K., and Fantus, I.G. (2006). Bradykinin augments insulin-stimulated glucose transport in rat adipocytes via endothelial nitric oxide synthase-mediated inhibition of Jun NH2-terminal kinase. Diabetes 55, 2678–2687.10.2337/db05-1538Search in Google Scholar PubMed

Borges, B.C., Antunes-Rodrigues, J., Castro, M., Bittencourt, J.C., Elias, C.F., and Elias, L.L.K. (2007). Expression of hypothalamic neuropeptides and the desensitization of pituitary-adrenal axis and hypophagia in the endotoxin tolerance. Horm. Behav. 52, 508–519.10.1016/j.yhbeh.2007.07.006Search in Google Scholar PubMed

Bouret, S.G. and Simerly, R.B. (2007). Development of leptin-sensitive circuits. J. Neuroendocrinol. 19, 575–582.10.1111/j.1365-2826.2007.01563.xSearch in Google Scholar PubMed

Bouret, S.G., Draper, S.J., and Simerly, R.B. (2004). Trophic action of leptin on hypothalamic neurons that regulate feeding. Science304, 108–110.10.1126/science.1095004Search in Google Scholar PubMed

Cota, D., Proulx, K., and Seeley, R.J. (2007). The role of CNS fuel sensing in energy and glucose regulation. Gastroenterology 132, 2158–2168.10.1053/j.gastro.2007.03.049Search in Google Scholar PubMed

Cowley, M.A., Smart, J.L., Rubinstein, M., Cerdan, M.G., Diano, S., Horvath, T.L., Cone, R.D., and Low, M.J. (2001). Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484.10.1038/35078085Search in Google Scholar PubMed

Dias, J.P. and Couture, R. (2012a). Blockade of kinin B1 receptor reverses plasma fatty acids composition changes and body and tissue fat gain in a rat model of insulin resistance. Diabetes Obes. Metab. 14, 244–253.10.1111/j.1463-1326.2011.01521.xSearch in Google Scholar PubMed

Dias, J.P. and Couture, R. (2012b). Suppression of vascular inflammation by kinin B1 receptor antagonism in a rat model of insulin resistance. J. Cardiovasc. Pharmacol. 60, 61–69.10.1097/FJC.0b013e3182576277Search in Google Scholar PubMed

Dias, J.P., Talbot, S., Sénécal, J., Carayon, P., and Couture, R. (2010). Kinin B1 receptor enhances the oxidative stress in a rat model of insulin resistance: outcome in hypertension, allodynia and metabolic complications. PLoS One 5, e12622.10.1371/journal.pone.0012622Search in Google Scholar PubMed PubMed Central

Douglass, J., McKinzie, A.A., and Couceyro, P. (1995). PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine. J. Neurosci. 15, 2471–2481.10.1523/JNEUROSCI.15-03-02471.1995Search in Google Scholar

Duka, A., Kintsurashvili, E., Duka, I., Ona, D., Hopkins, T.A., Bader, M., Gavras, I., and Gavras, H. (2008). Angiotensin-converting enzyme inhibition after experimental myocardial infarct: role of the kinin B1 and B2 receptors. Hypertension 51, 1352–1357.10.1161/HYPERTENSIONAHA.107.108506Search in Google Scholar

Elias, C.F., Lee, C., Kelly, J., Aschkenasi, C., Ahima, R.S., Couceyro, P.R., Kuhar, M.J., Saper, C.B., and Elmquist, J.K. (1998). Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 21, 1375–1385.10.1016/S0896-6273(00)80656-XSearch in Google Scholar

Elias, C.F., Kelly, J.F., Lee, C.E., Ahima, R.S., Drucker, D.J., Saper, C.B., and Elmquist, J.K. (2000). Chemical characterization of leptin-activated neurons in the rat brain. J. Comp. Neurol. 423, 261–281.10.1002/1096-9861(20000724)423:2<261::AID-CNE6>3.0.CO;2-6Search in Google Scholar

Elias, C.F., Lee, C.E., Kelly, J.F., Ahima, R.S., Kuhar, M., Saper, C.B., and Elmquist, J.K. (2001). Characterization of CART neurons in the rat and human hypothalamus. J. Comp. Neurol. 432, 1–19.10.1002/cne.1085Search in Google Scholar

Fonseca, R.G., Sales, V.M., Ropelle, E., Barros, C.C., Oyama, L., Ihara, S.S., Saad, M.J., Araújo, R.C., and Pesquero, J.B. (2013). Lack of kinin B1 receptor potentiates leptin action in the liver. J Mol. Med. (Berl). [Epub ahead of print].10.1007/s00109-013-1004-6Search in Google Scholar

Fulton, S. (2010). Appetite and reward. Front. Neuroendocrinol. 31, 85–103.10.1016/j.yfrne.2009.10.003Search in Google Scholar

Goossens, G.H., Petersen, L., Blaak, E.E., Hul, G., Arner, P., Astrup, A., Froguel, P., Patel, K., Pedersen, O., Polak, J., et al. (2009). Several obesity- and nutrient-related gene polymorphisms but not FTO and UCP variants modulate postabsorptive resting energy expenditure and fat-induced thermogenesis in obese individuals: the NUGENOB study. Int. J. Obes. (Lond.) 33, 669–679.10.1038/ijo.2009.59Search in Google Scholar

Higuchi, H., Yang, H.Y., and Sabol, S.L. (1988). Rat neuropeptide Y precursor gene expression. mRNA structure, tissue distribution, and regulation by glucocorticoids, cyclic AMP, and phorbol ester. J. Biol. Chem. 263, 6288–6295.10.1016/S0021-9258(18)68784-8Search in Google Scholar

Jaworski, J.N., Vicentic, A., Hunter, R.G., Kimmel, H.L., and Kuhar, M.J. (2003). CART peptides are modulators of mesolimbic dopamine and psychostimulants. Life Sci. 73, 741–747.10.1016/S0024-3205(03)00394-1Search in Google Scholar

Jaworski, J.N., Kimmel, H.L., Mitrano, D.A., Tallarida, R.J., and Kuhar, M.J. (2007). Intra-VTA CART 55-102 reduces the locomotor effect of systemic cocaine in rats: an isobolographic analysis. Neuropeptides 41, 65–72.10.1016/j.npep.2006.12.003Search in Google Scholar PubMed PubMed Central

Kuhar, M.J., Jaworski, J.N., Hubert, G.W., Philpot, K.B., and Dominguez, G. (2005). Cocaine- and amphetamine-regulated transcript peptides play a role in drug abuse and are potential therapeutic targets. AAPS J. 7, E259–265.10.1208/aapsj070125Search in Google Scholar PubMed PubMed Central

Lee, A.K., Mojtahed-Jaberi, M., Kyriakou, T., Astarloa, E.A.-O., Arno, M., Marshall, N.J., Brain, S.D., and O’Dell, S.D. (2010). Effect of high-fat feeding on expression of genes controlling availability of dopamine in mouse hypothalamus. Nutrition 26, 411–422.10.1016/j.nut.2009.05.007Search in Google Scholar PubMed PubMed Central

Lemos, M.T., Amaral, F.A., Dong, K.E., Bittencourt, M.F., Caetano, A.L., Pesquero, J.B., Viel, T.A., and Buck, H.S. (2010). Role of kinin B1 and B2 receptors in memory consolidation during the aging process of mice. Neuropeptides 44, 163–168.10.1016/j.npep.2009.12.006Search in Google Scholar PubMed

Marcon, R., Claudino, R.F., Dutra, R.C., Bento, A.F., Schmidt, E.C., Bouzon, Z.L., Sordi, R., Morais, R.L., Pesquero, J.B., and Calixto, J.B. (2013). Exacerbation of DSS-induced colitis in mice lacking kinin B1 receptor through compensation of up-regulation of kinin B2 receptors: The role of tight junctions and intestinal homeostasis. Br J Pharmacol. 168, 389–402.10.1111/j.1476-5381.2012.02136.xSearch in Google Scholar PubMed PubMed Central

Moreau, M.E., Garbacki, N., Molinaro, G., Brown, N.J., and Marceau, F. (2005). Survey review the kallikrein-kinin system: current and future pharmacological targets. J. Pharmacol. Sci. 38, 6–38.10.1254/jphs.SRJ05001XSearch in Google Scholar

Mori, M.A., Araújo, R.C., and Pesquero, J.B. (2008a). Kinin B1 receptor stimulation modulates leptin homeostasis. Evidence for an insulin-dependent mechanism. Int. Immunopharmacol. 8, 242–246.10.1016/j.intimp.2007.07.025Search in Google Scholar PubMed

Mori, M.A., Araújo, R.C., Reis, F.C.G., Sgai, D.G., Fonseca, R.G., Barros, C.C., Merino, V.F., Passadore, M., Barbosa, A.M., Ferrari, B., et al. (2008b). Kinin B1 receptor deficiency leads to leptin hypersensitivity and resistance to obesity. Diabetes 57, 1491–1500.10.2337/db07-1508Search in Google Scholar PubMed

Mori, M.A., Sales, V.M., Motta, F.L., Fonseca, R.G., Alenina, N., Guadagnini, D., Schadock, I., Silva, E.D., Torres, H.A., dos Santos, E.L., et al. (2012). Kinin B1 receptor in adipocytes regulates glucose tolerance and predisposition to obesity. PLoS One 7, e44782.10.1371/journal.pone.0044782Search in Google Scholar PubMed PubMed Central

Norsted, E., Gomuç, B., and Meister, B. (2008). Protein components of the blood-brain barrier (BBB) in the mediobasal hypothalamus. J. Chem. Neuroanat. 36, 107–121.10.1016/j.jchemneu.2008.06.002Search in Google Scholar PubMed

Paxinos, G. and Franklin, K.B.J. (2001). The mouse brain in stereotaxic coordinates, 2nd Ed., Academic Press, San Diego, CA.Search in Google Scholar

Pesquero, J.B., Araujo, R.C., Heppenstall, P.A., Stucky, C.L., Silva, J.A., Walther, T., Oliveira, S.M., Pesquero, J.L., Paiva, A.C., Calixto, J.B., et al. (2000). Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors. Proc. Natl. Acad. Sci. USA 97, 8140–8145.10.1073/pnas.120035997Search in Google Scholar

Philpot, K.B., Dallvechia-Adams, S., Smith, Y., and Kuhar, M.J. (2005). A cocaine-and-amphetamine-regulated-transcript peptide projection from the lateral hypothalamus to the ventral tegmental area. Neuroscience 135, 915–925.10.1016/j.neuroscience.2005.06.064Search in Google Scholar

Pinto, S., Roseberry, A.G., Liu, H., Diano, S., Shanabrough, M., Cai, X., Friedman, J.M., and Horvath, T.L. (2004). Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304, 110–115.10.1126/science.1089459Search in Google Scholar

Prado, G.N., Taylor, L., Zhou, X., Ricupero, D., Mierke, D.F., and Polgar, P. (2002). Mechanisms regulating the expression, self-maintenance, and signaling-function of the bradykinin B2 and B1 receptors. J. Cell. Physiol. 193, 275–286.10.1002/jcp.10175Search in Google Scholar

Simerly, R.B. (2008). Hypothalamic substrates of metabolic imprinting. Physiol. Behav. 94, 79–89.10.1016/j.physbeh.2007.11.023Search in Google Scholar

Tzschentke, T.M. (1998). Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog. Neurobiol. 56, 613–672.10.1016/S0301-0082(98)00060-4Search in Google Scholar

U.S. National Institutes of Health (1996). The Guide for the Care and Use of Laboratory Animals. Washington, DC: NIH Publication No. 85–23.Search in Google Scholar

Vrang, N. (2006). Anatomy of hypothalamic CART neurons. Peptides 27, 1970–1980.10.1016/j.peptides.2005.10.029Search in Google Scholar

Williams, G., Bing, C., Cai, X.J., Harrold, J.A., King, P.J., and Liu, X.H. (2001). The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol. Behav. 74, 683–701.10.1016/S0031-9384(01)00612-6Search in Google Scholar

Woods, S.C., Seeley, R.J., Porte, D., and Schwartz, M.W. (1998). Signals that regulate food intake and energy homeostasis. Science 280, 1378–1383.10.1126/science.280.5368.1378Search in Google Scholar

Zuccollo, A., Navarro, M., Frontera, M., Cueva, F., Carattino, M., and Catanzaro, O.L. (1999). The involvement of kallikrein-kinin system in diabetes type I (insulitis). Immunopharmacology 45, 69–74.10.1016/S0162-3109(99)00149-6Search in Google Scholar

Received: 2012-10-15
Accepted: 2013-3-20
Published Online: 2013-3-24
Published in Print: 2013-7-1

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 14.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2012-0302/html
Scroll to top button