Abstract
The novel insulin-secreting human pancreatic β-cell line, 1.1B4, demonstrates stability in culture and many of the secretory functional attributes of human pancreatic β-cells. This study investigated the cellular responses of 1.1B4 cells to lipotoxicity. Chronic 18-h exposure of 1.1B4 cells to 0.5 mm palmitate resulted in decreased cell viability and insulin content. Secretory responses to classical insulinotropic agents and cellular Ca2+ handling were also impaired. Palmitate decreased glucokinase activity and mRNA expression of genes involved in secretory function but up-regulated mRNA expression of HSPA5, EIF2A, and EIF2AK3, implicating activation of the endoplasmic reticulum stress response. Palmitate also induced DNA damage and apoptosis of 1.1B4 cells. These responses were accompanied by increased gene expression of the antioxidant enzymes SOD1, SOD2, CAT and GPX1. This study details molecular mechanisms underlying lipotoxicity in 1.1B4 cells and indicates the potential value of the novel β-cell line for future research.
References
Araki, E., Oyadomari, S., and Mori, M. (2003). Endoplasmic reticulum stress and diabetes mellitus. Intern. Med. (Tokyo, Japan) 42, 7–14.10.2169/internalmedicine.42.7Suche in Google Scholar PubMed
Bachar, E., Ariav, Y., Ketzinel-Gilad, M., Cerasi, E., Kaiser, N., and Leibowitz, G. (2009). Glucose amplifies fatty acid-induced endoplasmic reticulum stress in pancreatic β-cells via activation of mTORC1. PLoS One 4, e4954.10.1371/journal.pone.0004954Suche in Google Scholar PubMed PubMed Central
Bouwens, L. and Rooman, I. (2005). Regulation of pancreatic β-cell mass. Physiol. Rev. 85, 1255–1270.10.1152/physrev.00025.2004Suche in Google Scholar PubMed
Choi, S.E., Lee, Y.J., Hwang, G.S., Chung, J.H., Lee, S.J., Lee, J.H., Han, S.J., Kim, H.J., Lee, K.W., Kim, Y., et al. (2011). Supplement of TCA cycle intermediates protects against high glucose/palmitate-induced INS-1β cell death. Arch. Biochem. Biophys. 505, 231–241.10.1016/j.abb.2010.10.011Suche in Google Scholar PubMed
Chu, K.Y., Lin, Y., Hendel, A., Kulpa, J.E., Brownsey, R.W., and Johnson, J.D. (2010). ATP-citrate lyase reduction mediates palmitate-induced apoptosis in pancreatic β-cells. J. Biol. Chem. 285, 32606–32615.10.1074/jbc.M110.157172Suche in Google Scholar PubMed PubMed Central
Cnop, M., Igoillo-Esteve, M., Cunha, D.A., Ladrière, L., and Eizirik, D.L. (2008). An update on lipotoxic endoplasmic reticulum stress in pancreatic β-cells. Biochem. Soc. Trans. 36, 909–915.10.1042/BST0360909Suche in Google Scholar PubMed
Cunha, D.A., Ladrière, L., Ortis, F., Igoillo-Esteve, M., Gurzov, E.N., Lupi, R., Marchetti, P., Eizirik, D.L., and Cnop, M. (2009). Glucagon-like peptide-1 agonists protect pancreatic β-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB. Diabetes 58, 2851–2862.10.2337/db09-0685Suche in Google Scholar PubMed PubMed Central
Cunha, D.A., Hekerman, P., Ladrière, L., Bazarra-Castro, A., Ortis, F., Wakeham, M.C., Moore, F., Rasschaert, J., Cardozo, A.K., Bellomo, E., et al. (2008). Initiation and execution of lipotoxic ER stress in pancreatic β-cells. J. Cell. Sci. 121, 2308–2318.10.1242/jcs.026062Suche in Google Scholar PubMed PubMed Central
Cvjetićanin, T., Stojanović, I., Timotijević, G., Stosić-Grujicić, S., and Miljković, D. (2009). T cells cooperate with palmitic acid in induction of β cell apoptosis. BMC Immunol. 10, 29.10.1186/1471-2172-10-29Suche in Google Scholar PubMed PubMed Central
D’Aleo, V., Del Guerra, S., Martano, M., Bonamassa, B., Canistro, D., Soleti, A., Valgimigli, L., Paolini, M., Filipponi, F., Boggi, U., et al. (2009). The non-peptidyl low molecular weight radical scavenger IAC protects human pancreatic islets from lipotoxicity. Mol. Cell. Endocrinol. 309, 63–66.10.1016/j.mce.2009.05.010Suche in Google Scholar PubMed
Del Prato, S. (2009). Role of glucotoxicity and lipotoxicity in the pathophysiology of type 2 diabetes mellitus and emerging treatment strategies. Diabet. Med. 26, 1185–1192.10.1111/j.1464-5491.2009.02847.xSuche in Google Scholar PubMed
Elsner, M., Gehrmann, W., and Lenzen, S. (2011). Peroxisome-generated hydrogen peroxide as important mediator of lipotoxicity in insulin-producing cells. Diabetes 60, 200–208.10.2337/db09-1401Suche in Google Scholar PubMed PubMed Central
Flatt, P.R. and Bailey, C.J. (1981). Abnormal plasma glucose and insulin responses in heterozygous lean (ob/+) mice. Diabetologia 20, 573–577.10.1007/BF00252768Suche in Google Scholar PubMed
Gehrmann, W., Elsner, M., and Lenzen, S. (2010). Role of metabolically generated reactive oxygen species for lipotoxicity in pancreatic β-cells. Diabetes Obes. Metab. 12 (Suppl. 2), 149–158.10.1111/j.1463-1326.2010.01265.xSuche in Google Scholar PubMed
Gwiazda, K.S., Yang, T.L., Lin, Y., and Johnson, J.D. (2009). Effects of palmitate on ER and cytosolic Ca2+ homeostasis in β-cells. Am. J. Physiol. Endocrinol. Metab. 296, E690–701.10.1152/ajpendo.90525.2008Suche in Google Scholar PubMed
Hellemans, K.H., Hannaert, J.C., Denys, B., Steffensen, K.R., Raemdonck, C., Martens, G.A., Van Veldhoven, P.P., Gustafsson, J.A., and Pipeleers, D. (2009). Susceptibility of pancreatic β cells to fatty acids is regulated by LXR/PPARα-dependent stearoyl-coenzyme A desaturase. PLoS One 4, e7266.10.1371/journal.pone.0007266Suche in Google Scholar PubMed PubMed Central
Hoppa, M.B., Collins, S., Ramracheya, R., Hodson, L., Amisten, S., Zhang, Q., Johnson, P., Ashcroft, F.M., and Rorsman, P. (2009). Chronic palmitate exposure inhibits insulin secretion by dissociation of Ca2+ channels from secretory granules. Cell. Metab. 10, 455–465.10.1016/j.cmet.2009.09.011Suche in Google Scholar PubMed PubMed Central
Jonas, J.C., Bensellam, M., Duprez, J., Elouil, H., Guiot, Y., and Pascal, S.M.A. (2009). Glucose regulation of islet stress responses and β-cell failure in type 2 diabetes. Diabetes Obes. Metab. 11 (Suppl. 4), 65–81.10.1111/j.1463-1326.2009.01112.xSuche in Google Scholar PubMed
Karaskov, E., Scott, C., Zhang, L., Teodoro, T., Ravazzola, M., and Volchuk, A. (2006). Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic β-cell apoptosis. Endocrinology 147, 3398–3407.10.1210/en.2005-1494Suche in Google Scholar PubMed
Karunakaran, U., Kim, H.J., Kim, J.Y., and Lee, I.K. (2012). Guards and culprits in the endoplasmic reticulum: glucolipotoxicity and β-cell failure in type II diabetes. Exp. Diabetes Res. 2012, 639762.10.1155/2012/639762Suche in Google Scholar PubMed PubMed Central
Kharroubi, I., Ladrière, L., Cardozo, A.K., Dogusan, Z., Cnop, M., and Eizirik, D.L. (2004). Free fatty acids and cytokines induce pancreatic β-cell apoptosis by different mechanisms: role of nuclear factor-κB and endoplasmic reticulum stress. Endocrinology 145, 5087–5096.10.1210/en.2004-0478Suche in Google Scholar PubMed
Lee, S.M., Choi, S.E., Lee, J.H., Lee, J.J., Jung, I.R., Lee, S.J., Lee, K.W., and Kang, Y. (2011). Involvement of the TLR4 (Toll-like receptor4) signaling pathway in palmitate-induced INS-1 β cell death. Mol. Cell. Biochem. 354, 207–217.10.1007/s11010-011-0820-7Suche in Google Scholar PubMed
Lees Murdock, D.J., Barnett, Y.A., and Barnett, C.R. (2004). DNA damage and cytotoxicity in pancreatic β-cells expressing human CYP2E1. Biochem. Pharmacol. 68, 523–530.10.1016/j.bcp.2004.04.008Suche in Google Scholar PubMed
Lenzen, S., Tiedge, M., Flatt, P.R., Bailey, C.J., and Panten, U. (1987). Defective regulation of glucokinase in rat pancreatic islet cell tumours. Acta Endocrinol. (Copenh) 115, 514–520.10.1530/acta.0.1150514Suche in Google Scholar PubMed
Maestre, I., Jordan, J., Calvo, S., Reig, J.A., Cena, V., Soria, B., Prentki, M., and Roche, E. (2003). Mitochondrial dysfunction is involved in apoptosis induced by serum withdrawal and fatty acids in the β-cell line INS-1. Endocrinology 144, 335–345.10.1210/en.2001-211282Suche in Google Scholar PubMed
Martinez, S.C., Tanabe, K., Cras-Méneur, C., Abumrad, N.A., Bernal-Mizrachi, E., and Permutt, M.A. (2008). Inhibition of Foxo1 protects pancreatic islet β-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis. Diabetes 57, 846–859.10.2337/db07-0595Suche in Google Scholar PubMed
McCarthy, M.I. (2010). Genomics, type 2 diabetes, and obesity. N. Engl. J. Med. 363, 2339–2350.10.1056/NEJMra0906948Suche in Google Scholar PubMed
McCluskey, J.T., Hamid, M., Guo-Parke, H., McClenaghan, N.H., Gomis, R., and Flatt, P.R. (2011). Development and functional characterization of insulin-releasing human pancreatic β cell lines produced by electrofusion. J. Biol. Chem. 286, 21982–21992.10.1074/jbc.M111.226795Suche in Google Scholar PubMed PubMed Central
Miguel, J.C., Patterson, S., Abdel-Wahab, Y.H., Mathias, P.C., and Flatt, P.R. (2004). Time-correlation between membrane depolarization and intracellular calcium in insulin secreting BRIN-BD11 cells: studies using FLIPR. Cell Calcium 36, 43–50.10.1016/j.ceca.2003.11.007Suche in Google Scholar PubMed
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63.10.1016/0022-1759(83)90303-4Suche in Google Scholar PubMed
Ojo, O.O., Abdel-Wahab, Y.H., Flatt, P.R., Mechkarska, M., and Conlon, J.M. (2011). Tigerinin-1R: a potent, non-toxic insulin-releasing peptide isolated from the skin of the Asian frog, Hoplobatrachus rugulosus. Diabetes Obes. Metab. 13, 1114–1122.10.1111/j.1463-1326.2011.01470.xSuche in Google Scholar PubMed
Piro, S., Anello, M., Di Pietro, C., Lizzio, M.N., Patane, G., Rabuazzo, A.M., Vigneri, R., Purrello, M., and Purrello, F. (2002). Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets: possible role of oxidative stress. Metab. Clin. Exp. 51, 1340–1347.10.1053/meta.2002.35200Suche in Google Scholar PubMed
Rakatzi, I., Mueller, H., Ritzeler, O., Tennagels, N., and Eckel, J. (2004). Adiponectin counteracts cytokine- and fatty acid-induced apoptosis in the pancreatic β-cell line INS-1. Diabetologia 47, 249–258.10.1007/s00125-003-1293-3Suche in Google Scholar PubMed
Sachdeva, M.M., Claiborn, K.C., Khoo, C., Yang, J., Groff, D.N., Mirmira, R.G., and Stoffers, D.A. (2009). Pdx1 (MODY4) regulates pancreatic β cell susceptibility to ER stress. Proc. Natl. Acad. Sci. USA 106, 19090–19095.10.1073/pnas.0904849106Suche in Google Scholar PubMed PubMed Central
Saitoh, Y., Hongwei, W., Ueno, H., Mizuta, M., and Nakazato, M. (2010). Candesartan attenuates fatty acid-induced oxidative stress and NAD(P)H oxidase activity in pancreatic β-cells. Diabetes Res. Clin. Pract. 90, 54–59.10.1016/j.diabres.2010.06.005Suche in Google Scholar PubMed
Sargsyan, E. and Bergsten, P. (2011). Lipotoxicity is glucose-dependent in INS-1E cells but not in human islets and MIN6 cells. Lipids Health. Dis. 10, 115.10.1186/1476-511X-10-115Suche in Google Scholar PubMed PubMed Central
Sun, Y., Ren, M., Gao, G.Q., Gong, B., Xin, W., Guo, H., Zhang, X.J., Gao, L., and Zhao, J.J. (2008). Chronic palmitate exposure inhibits AMPKα and decreases glucose-stimulated insulin secretion from β-cells: modulation by fenofibrate. Acta Pharmacol. Sin. 29, 443–450.10.1111/j.1745-7254.2008.00717.xSuche in Google Scholar PubMed
Ten, R.M., Paya, C.V., Israel, N., Le Bail, O., Mattei, M.G., Virelizier, J.L., Kourilsky, P., and Israel, A. (1992). The characterization of the promoter of the gene encoding the p50 subunit of NF-κB indicates that it participates in its own regulation. EMBO J. 11, 195–203.10.1002/j.1460-2075.1992.tb05042.xSuche in Google Scholar PubMed PubMed Central
Weir, G.C., Marselli, L., Marchetti, P., Katsuta, H., Jung, M.H., and Bonner-Weir, S. (2009). Towards better understanding of the contributions of overwork and glucotoxicity to the β-cell inadequacy of type 2 diabetes. Diabetes Obes. Metab. 11 (Suppl. 4), 82–90.10.1111/j.1463-1326.2009.01113.xSuche in Google Scholar PubMed
Yoshikawa, H., Tajiri, Y., Sako, Y., Hashimoto, T., Umeda, F., and Nawata, H. (2001). Effects of free fatty acids on β-cell functions: a possible involvement of peroxisome proliferator-activated receptors α or pancreatic/duodenal homeobox. Metab. Clin. Exp. 50, 613–618.10.1053/meta.2001.22565Suche in Google Scholar PubMed
©2013 by Walter de Gruyter Berlin Boston
Artikel in diesem Heft
- Masthead
- Masthead
- Reviews
- Glucocerebrosidase, a new player changing the old rules in Lewy body diseases
- Comparison of natural and recombinant tissue factor proteins: new insights
- Targeting caspases in cancer therapeutics
- When stable RNA becomes unstable: the degradation of ribosomes in bacteria and beyond
- Minireviews
- Galectins: new agonists of platelet activation
- Antitumor effects of energy restriction-mimetic agents: thiazolidinediones
- Research Articles/Short Communications
- Protein Structure and Function
- Biochemical characterization of an S-adenosyl-l-methionine-dependent methyltransferase (Rv0469) of Mycobacterium tuberculosis
- Immunologically active peptides that accompany hen egg yolk immunoglobulin Y: separation and identification
- Membranes, Lipids, Glycobiology
- Potential importance of Maackia amurensis agglutinin in non-small cell lung cancer
- Molecular Medicine
- Kinin B1 receptor gene ablation affects hypothalamic CART productionb
- Cell Biology and Signaling
- Effects of lipotoxicity on a novel insulin-secreting human pancreatic β-cell line, 1.1B4
Artikel in diesem Heft
- Masthead
- Masthead
- Reviews
- Glucocerebrosidase, a new player changing the old rules in Lewy body diseases
- Comparison of natural and recombinant tissue factor proteins: new insights
- Targeting caspases in cancer therapeutics
- When stable RNA becomes unstable: the degradation of ribosomes in bacteria and beyond
- Minireviews
- Galectins: new agonists of platelet activation
- Antitumor effects of energy restriction-mimetic agents: thiazolidinediones
- Research Articles/Short Communications
- Protein Structure and Function
- Biochemical characterization of an S-adenosyl-l-methionine-dependent methyltransferase (Rv0469) of Mycobacterium tuberculosis
- Immunologically active peptides that accompany hen egg yolk immunoglobulin Y: separation and identification
- Membranes, Lipids, Glycobiology
- Potential importance of Maackia amurensis agglutinin in non-small cell lung cancer
- Molecular Medicine
- Kinin B1 receptor gene ablation affects hypothalamic CART productionb
- Cell Biology and Signaling
- Effects of lipotoxicity on a novel insulin-secreting human pancreatic β-cell line, 1.1B4