Startseite Brown adipose tissue as an endocrine organ: updates on the emerging role of batokines
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Brown adipose tissue as an endocrine organ: updates on the emerging role of batokines

  • Fabiane Ferreira Martins ORCID logo , Vanessa Souza-Mello ORCID logo , Marcia Barbosa Aguila ORCID logo und Carlos Alberto Mandarim-de-Lacerda ORCID logo EMAIL logo
Veröffentlicht/Copyright: 26. Oktober 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Brown adipose tissue (BAT) remains active in adults, oxidizing fatty acids or glucose and releasing energy in the form of heat. Brown adipocytes and enhanced thermogenesis are targets for treating obesity and its comorbidities. BAT shows high synthesis activity and secretes several signaling molecules. The brown adipokines, or batokines, take action in an autocrine, paracrine, and endocrine manner. Batokines have a role in the homeostasis of the cardiovascular system, central nervous system, white adipose tissue, liver, and skeletal muscle and exert beneficial effects on BAT. The systemic function of batokines gives BAT an endocrine organ profile. Besides, the batokines Fibroblast Growth Factor-21, Vascular Endothelial Growth Factor A, Bone Morphogenetic Protein 8, Neuregulin 4, Myostatin, and Interleukin-6 emerge as targets to treat obesity and its comorbidities, deserving attention. This review outlines the role of six emerging batokines on BAT and their cross-talk with other organs, focusing on their physiological significance and diet-induced changes.

Highlights

  • – Brown adipose tissue is a therapeutic target to combat obesity and its comorbidities by modulating the batokines profile and activating thermogenic activity.

  • – FGF21 is released by BAT during thermogenesis and exerts beneficial effects on the cardiovascular system.

  • – VEGF-A is the batokine that regulates BAT by autocrine mechanisms and promotes the maintenance of angiogenesis and thermogenesis.

  • – BMP8 is expressed during thermogenesis and promotes the regulation of energy metabolism between the hypothalamus and the BAT.

  • – NRG-4 is a batokine that belongs to the epidermal growth factor family members and exerts beneficial effects on the liver and insulin resistance.

  • – Myostatin is a batokine harmful to skeletal muscle, and BAT activation is a significant target to avoid myostatin’s deleterious effects on muscle bioenergetics.

  • – IL-6 improves glucose metabolism in adipocytes and the liver and acts in the maintenance of thermogenesis.

  • – Batokines represent promising therapeutic targets for treating obesity and its comorbidities.


Corresponding author: Carlos Alberto Mandarim-de-Lacerda, Laboratório de Morfometria, Metabolismo e Doença Cardiovascular, Centro Biomédico, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Av 28 de Setembro 87 fds, 20551-030, Rio de Janeiro, RJ, Brazil, Phone: +55 21 2868 8316, Fax: 2868 8033, E-mail: , www.lmmc.uerj.br

Funding source: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Award Identifier / Grant number: E-26/200.796/2021

Award Identifier / Grant number: E-26/200.936/2021

Award Identifier / Grant number: E-26/200.984/2022

Award Identifier / Grant number: E-26/201.859/2020

Award Identifier / Grant number: 302.920/ 2016-1

Award Identifier / Grant number: 303.785/2020-9

Award Identifier / Grant number: 305.865/2017-0

Award Identifier / Grant number: 40.60.81/2018-2

  1. Research funding: This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil) (CNPq, Grant No 302.920/ 2016-1 and 40.60.81/2018-2 to CAML, 305.865/2017-0 to MBA, and 303785/2020-9 to VS-M), Fundaçao Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (Faperj, E-26/200.936/2021 to CAML, E-26/200.796/2021 to MBA, E-26/201.859/2020 to FFM, and E-26/200.984/2022 to VS-M).

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. All authors contributed equally to this manuscript.

  3. Competing interests: Authors state no conflict of interest.

  4. Ethical approval: The conducted research is not related to either human or animal use.

References

1. Bargut, TC, Aguila, MB, Mandarim-de-Lacerda, CA. Brown adipose tissue: updates in cellular and molecular biology. Tissue Cell 2016;48:452–60. https://doi.org/10.1016/j.tice.2016.08.001.Suche in Google Scholar PubMed

2. Bargut, TC, Souza-Mello, V, Aguila, MB, Mandarim-de-Lacerda, CA. Browning of white adipose tissue: lessons from experimental models. Horm Mol Biol Clin Invest 2017;31:20160051. https://doi.org/10.1515/hmbci-2016-0051.Suche in Google Scholar PubMed

3. Wang, W, Kissig, M, Rajakumari, S, Huang, L, Lim, HW, Won, KJ, et al.. Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc Natl Acad Sci USA 2014;111:14466–71. https://doi.org/10.1073/pnas.1412685111.Suche in Google Scholar PubMed PubMed Central

4. Ahmad, B, Vohra, MS, Saleemi, MA, Serpell, CJ, Fong, IL, Wong, EH. Brown/beige adipose tissues and the emerging role of their secretory factors in improving metabolic health: the batokines. Biochimie 2021;184:26–39. https://doi.org/10.1016/j.biochi.2021.01.015.Suche in Google Scholar PubMed

5. Lowe, CE, O’Rahilly, S, Rochford, JJ. Adipogenesis at a glance. J Cell Sci 2011;124:2681–6. https://doi.org/10.1242/jcs.079699.Suche in Google Scholar PubMed

6. Peirce, V, Carobbio, S, Vidal-Puig, A. The different shades of fat. Nature 2014;510:76–83. https://doi.org/10.1038/nature13477.Suche in Google Scholar PubMed

7. Nedergaard, J, Bengtsson, T, Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007;293:E444–52. https://doi.org/10.1152/ajpendo.00691.2006.Suche in Google Scholar PubMed

8. Mandarim-de-Lacerda, CA, Del Sol, M, Vazquez, B, Aguila, MB. Mice as an animal model for the study of adipose tissue and obesity. Int J Morphol 2021;39:1521–8. https://doi.org/10.4067/S0717-95022021000601521.Suche in Google Scholar

9. Rangel-Azevedo, C, Santana-Oliveira, DA, Miranda, CS, Martins, FF, Mandarim-de-Lacerda, CA, Souza-Mello, V. Progressive brown adipocyte dysfunction: whitening and impaired nonshivering thermogenesis as long-term obesity complications. J Nutr Biochem 2022;105:109002. https://doi.org/10.1016/j.jnutbio.2022.109002.Suche in Google Scholar PubMed

10. Miranda, CS, Silva-Veiga, F, Martins, FF, Rachid, TL, Mandarim-De-Lacerda, CA, Souza-Mello, V. PPAR-α activation counters brown adipose tissue whitening: a comparative study between high-fat- and high-fructose-fed mice. Nutrition 2020;78:110791. https://doi.org/10.1016/j.nut.2020.110791.Suche in Google Scholar PubMed

11. Yang, FT, Stanford, KI. Batokines: mediators of inter-tissue communication (a mini-review). Curr Obes Rep 2022;11:1–9. https://doi.org/10.1007/s13679-021-00465-7.Suche in Google Scholar PubMed PubMed Central

12. Hasegawa, Y, Ikeda, K, Chen, Y, Alba, DL, Stifler, D, Shinoda, K, et al.. Repression of adipose tissue fibrosis through a PRDM16-GTF2IRD1 complex improves systemic glucose homeostasis. Cell Metabol 2018;27:180–94 e6. https://doi.org/10.1016/j.cmet.2017.12.005.Suche in Google Scholar PubMed PubMed Central

13. Kajimura, S, Spiegelman, BM, Seale, P. Brown and beige fat: physiological roles beyond heat generation. Cell Metabol 2015;22:546–59. https://doi.org/10.1016/j.cmet.2015.09.007.Suche in Google Scholar PubMed PubMed Central

14. Ikeda, K, Yamada, T. UCP1 dependent and independent thermogenesis in brown and beige adipocytes. Front Endocrinol 2020;11:498. https://doi.org/10.3389/fendo.2020.00498.Suche in Google Scholar PubMed PubMed Central

15. Martins, FF, Bargut, TC, Aguila, MB, Mandarim-de-Lacerda, CA. Thermogenesis, fatty acid synthesis with oxidation, and inflammation in the brown adipose tissue of ob/ob (-/-) mice. Ann Anat 2017;210:44–51. https://doi.org/10.1016/j.aanat.2016.11.013.Suche in Google Scholar PubMed

16. Santana-Oliveira, DA, Fernandes-da-Silva, A, Miranda, CS, Martins, FF, Mandarim-de-Lacerda, CA, Souza-Mello, V. A PPAR-alpha agonist and DPP-4 inhibitor mitigate adipocyte dysfunction in obese mice. J Mol Endocrinol 2022;68:225–41. https://doi.org/10.1530/JME-21-0084.Suche in Google Scholar PubMed

17. Yan, X, Gou, Z, Li, Y, Wang, Y, Zhu, J, Xu, G, et al.. Fibroblast growth factor 21 inhibits atherosclerosis in apoE−/− mice by ameliorating fas-mediated apoptosis. Lipids Health Dis 2018;17:203. https://doi.org/10.1186/s12944-018-0846-x.Suche in Google Scholar PubMed PubMed Central

18. Zhang, X, Yang, L, Xu, X, Tang, F, Yi, P, Qiu, B, et al.. A review of fibroblast growth factor 21 in diabetic cardiomyopathy. Heart Fail Rev 2019;24:1005–17. https://doi.org/10.1007/s10741-019-09809-x.Suche in Google Scholar PubMed

19. BonDurant, LD, Ameka, M, Naber, MC, Markan, KR, Idiga, SO, Acevedo, MR, et al.. FGF21 regulates metabolism through adipose-dependent and -independent mechanisms. Cell Metabol 2017;25:935–44 e4. https://doi.org/10.1016/j.cmet.2017.03.005.Suche in Google Scholar PubMed PubMed Central

20. Kroon, T, Harms, M, Maurer, S, Bonnet, L, Alexandersson, I, Lindblom, A, et al.. PPAR gamma and PPAR alpha synergize to induce robust browning of white fat in vivo. Mol Metabol 2020;36:100964. https://doi.org/10.1016/j.molmet.2020.02.007.Suche in Google Scholar PubMed PubMed Central

21. Zhu, L, Zhao, H, Liu, J, Cai, H, Wu, B, Liu, Z, et al.. Dynamic folding modulation generates FGF21 variant against diabetes. EMBO Rep 2021;22:e51352. https://doi.org/10.15252/embr.202051352.Suche in Google Scholar PubMed PubMed Central

22. Cheng, P, Zhang, F, Yu, L, Lin, X, He, L, Li, X, et al.. Physiological and pharmacological roles of FGF21 in cardiovascular diseases. J Diabetes Res 2016;2016:1540267. https://doi.org/10.1155/2016/1540267.Suche in Google Scholar PubMed PubMed Central

23. Fisher, FM, Maratos-Flier, E. Understanding the physiology of FGF21. Annu Rev Physiol 2016;78:223–41. https://doi.org/10.1146/annurev-physiol-021115-105339.Suche in Google Scholar PubMed

24. Castro-de-Paiva, P, Marinho, TS, Mandarim-de-Lacerda, CA, Aguila, MB. Intermittent fasting, high-intensity interval training, or a combination of both have beneficial effects in obese mice with nonalcoholic fatty liver disease. J Nutr Biochem 2022;104:108997. https://doi.org/10.1016/j.jnutbio.2022.108997.Suche in Google Scholar PubMed

25. Li, J, Gong, L, Zhang, R, Li, S, Yu, H, Liu, Y, et al.. Fibroblast growth factor 21 inhibited inflammation and fibrosis after myocardial infarction via EGR1. Eur J Pharmacol 2021;910:174470. https://doi.org/10.1016/j.ejphar.2021.174470.Suche in Google Scholar PubMed

26. Planavila, A, Redondo-Angulo, I, Ribas, F, Garrabou, G, Casademont, J, Giralt, M, et al.. Fibroblast growth factor 21 protects the heart from oxidative stress. Cardiovasc Res 2015;106:19–31. https://doi.org/10.1093/cvr/cvu263.Suche in Google Scholar PubMed

27. Gu, L, Jiang, W, Zheng, R, Yao, Y, Ma, G. Fibroblast growth factor 21 correlates with the prognosis of dilated cardiomyopathy. Cardiology 2021;146:27–33. https://doi.org/10.1159/000509239.Suche in Google Scholar PubMed

28. Ferrer-Curriu, G, Redondo-Angulo, I, Guitart-Mampel, M, Ruperez, C, Mas-Stachurska, A, Sitges, M, et al.. Fibroblast growth factor-21 protects against fibrosis in hypertensive heart disease. J Pathol 2019;248:30–40. https://doi.org/10.1002/path.5226.Suche in Google Scholar PubMed

29. Li, S, Zhu, Z, Xue, M, Yi, X, Liang, J, Niu, C, et al.. Fibroblast growth factor 21 protects the heart from angiotensin II-induced cardiac hypertrophy and dysfunction via SIRT1. Biochim Biophys Acta, Mol Basis Dis 2019;1865:1241–52. https://doi.org/10.1016/j.bbadis.2019.01.019.Suche in Google Scholar PubMed

30. He, JL, Zhao, M, Xia, JJ, Guan, J, Liu, Y, Wang, LQ, et al.. FGF21 ameliorates the neurocontrol of blood pressure in the high fructose-drinking rats. Sci Rep 2016;6:29582. https://doi.org/10.1038/srep29582.Suche in Google Scholar PubMed PubMed Central

31. Zeng, Z, Zheng, Q, Chen, J, Tan, X, Li, Q, Ding, L, et al.. FGF21 mitigates atherosclerosis via inhibition of NLRP3 inflammasome-mediated vascular endothelial cells pyroptosis. Exp Cell Res 2020;393:112108. https://doi.org/10.1016/j.yexcr.2020.112108.Suche in Google Scholar PubMed

32. Zhang, Y, Liu, Z, Zhou, M, Liu, C. Therapeutic effects of fibroblast growth factor 21 against atherosclerosis via the NF kappaB pathway. Mol Med Rep 2018;17:1453–60. https://doi.org/10.3892/mmr.Suche in Google Scholar

33. Peach, CJ, Mignone, VW, Arruda, MA, Alcobia, DC, Hill, SJ, Kilpatrick, LE, et al.. Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2. Int J Mol Sci 2018;19:1264. https://doi.org/10.3390/ijms19041264.Suche in Google Scholar PubMed PubMed Central

34. Shaik, F, Cuthbert, GA, Homer-Vanniasinkam, S, Muench, SP, Ponnambalam, S, Harrison, MA. Structural basis for vascular endothelial growth factor receptor activation and implications for disease therapy. Biomolecules 2020;10:1673. https://doi.org/10.3390/biom10121673.Suche in Google Scholar PubMed PubMed Central

35. Shibuya, M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2011;2:1097–105. https://doi.org/10.1177/1947601911423031.Suche in Google Scholar PubMed PubMed Central

36. Sun, K, Kusminski, CM, Luby-Phelps, K, Spurgin, SB, An, YA, Wang, QA, et al.. Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Mol Metabol 2014;3:474–83. https://doi.org/10.1016/j.molmet.2014.03.010.Suche in Google Scholar PubMed PubMed Central

37. Korac, A, Buzadzic, B, Petrovic, V, Vasilijevic, A, Jankovic, A, Micunovic, K, et al.. The role of nitric oxide in remodeling of capillary network in rat interscapular brown adipose tissue after long-term cold acclimation. Histol Histopathol 2008;23:441–50. https://doi.org/10.14670/HH-23.441.Suche in Google Scholar PubMed

38. Fu, P, Zhu, R, Jia, J, Hu, Y, Wu, C, Cieszczyk, P, et al.. Aerobic exercise promotes the functions of brown adipose tissue in obese mice via a mechanism involving COX2 in the VEGF signaling pathway. Nutr Metab 2021;18:56. https://doi.org/10.1186/s12986-021-00581-0.Suche in Google Scholar PubMed PubMed Central

39. Bagchi, M, Kim, LA, Boucher, J, Walshe, TE, Kahn, CR, D’Amore, PA. Vascular endothelial growth factor is important for brown adipose tissue development and maintenance. Faseb J 2013;27:3257–71. https://doi.org/10.1096/fj.12-221812.Suche in Google Scholar PubMed PubMed Central

40. Mahdaviani, K, Chess, D, Wu, Y, Shirihai, O, Aprahamian, TR. Autocrine effect of vascular endothelial growth factor-A is essential for mitochondrial function in brown adipocytes. Metabolism 2016;65:26–35. https://doi.org/10.1016/j.metabol.2015.09.012.Suche in Google Scholar PubMed PubMed Central

41. Carreira, AC, Alves, GG, Zambuzzi, WF, Sogayar, MC, Granjeiro, JM. Bone morphogenetic proteins: structure, biological function and therapeutic applications. Arch Biochem Biophys 2014;561:64–73. https://doi.org/10.1016/j.abb.2014.07.011.Suche in Google Scholar PubMed

42. Chen, Y, Ma, B, Wang, X, Zha, X, Sheng, C, Yang, P, et al.. Potential functions of the BMP family in bone, obesity, and glucose metabolism. J Diabetes Res 2021;2021:6707464. https://doi.org/10.1155/2021/6707464.Suche in Google Scholar PubMed PubMed Central

43. Whittle, AJ, Carobbio, S, Martins, L, Slawik, M, Hondares, E, Vazquez, MJ, et al.. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 2012;149:871–85. https://doi.org/10.1016/j.cell.2012.02.066.Suche in Google Scholar PubMed PubMed Central

44. Urisarri, A, Gonzalez-Garcia, I, Estevez-Salguero, A, Pata, MP, Milbank, E, Lopez, N, et al.. BMP8 and activated brown adipose tissue in human newborns. Nat Commun 2021;12:5274. https://doi.org/10.1038/s41467-021-25456-z.Suche in Google Scholar PubMed PubMed Central

45. Pellegrinelli, V, Peirce, VJ, Howard, L, Virtue, S, Turei, D, Senzacqua, M, et al.. Adipocyte-secreted BMP8b mediates adrenergic-induced remodeling of the neuro-vascular network in adipose tissue. Nat Commun 2018;9:4974. https://doi.org/10.1038/s41467-018-07453-x.Suche in Google Scholar PubMed PubMed Central

46. Martins, L, Seoane-Collazo, P, Contreras, C, Gonzalez-Garcia, I, Martinez-Sanchez, N, Gonzalez, F, et al.. A functional link between AMPK and orexin mediates the effect of BMP8B on energy balance. Cell Rep 2016;16:2231–42. https://doi.org/10.1016/j.celrep.2016.07.045.Suche in Google Scholar PubMed PubMed Central

47. Madden, CJ, Tupone, D, Morrison, SF. Orexin modulates brown adipose tissue thermogenesis. Biomol Concepts 2012;3:381–6. https://doi.org/10.1515/bmc-2011-0066.Suche in Google Scholar PubMed PubMed Central

48. Morrison, SF, Madden, CJ, Tupone, D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metabol 2014;19:741–56. https://doi.org/10.1016/j.cmet.2014.02.007.Suche in Google Scholar PubMed PubMed Central

49. Sellayah, D, Bharaj, P, Sikder, D. Orexin is required for brown adipose tissue development, differentiation, and function. Cell Metabol 2011;14:478–90. https://doi.org/10.1016/j.cmet.2011.08.010.Suche in Google Scholar PubMed

50. Villarroya, J, Cereijo, R, Gavalda-Navarro, A, Peyrou, M, Giralt, M, Villarroya, F. New insights into the secretory functions of brown adipose tissue. J Endocrinol 2019;243:R19–27. https://doi.org/10.1530/JOE-19-0295.Suche in Google Scholar PubMed

51. Puigserver, P, Spiegelman, BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 2003;24:78–90. https://doi.org/10.1210/er.2002-0012.Suche in Google Scholar PubMed

52. Diaz-Saez, F, Blanco-Sinfreu, C, Archilla-Ortega, A, Sebastian, D, Romero, M, Hernandez-Alvarez, MI, et al.. Neuregulin 4 downregulation induces insulin resistance in 3T3-L1 adipocytes through inflammation and autophagic degradation of GLUT4 vesicles. Int J Mol Sci 2021;22:12960. https://doi.org/10.3390/ijms222312960.Suche in Google Scholar PubMed PubMed Central

53. Wang, GX, Zhao, XY, Meng, ZX, Kern, M, Dietrich, A, Chen, Z, et al.. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat Med 2014;20:1436–43. https://doi.org/10.1038/nm.3713.Suche in Google Scholar PubMed PubMed Central

54. Rosell, M, Kaforou, M, Frontini, A, Okolo, A, Chan, YW, Nikolopoulou, E, et al.. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am J Physiol Endocrinol Metab 2014;306:E945–64. https://doi.org/10.1152/ajpendo.00473.2013.Suche in Google Scholar PubMed PubMed Central

55. Tutunchi, H, Ostadrahimi, A, Hosseinzadeh-Attar, MJ, Miryan, M, Mobasseri, M, Ebrahimi-Mameghani, M. A systematic review of the association of neuregulin 4, a brown fat-enriched secreted factor, with obesity and related metabolic disturbances. Obes Rev 2020;21:e12952. https://doi.org/10.1111/obr.12952.Suche in Google Scholar PubMed

56. Tutunchi, H, Mobasseri, M, Aghamohammadzadeh, N, Hooshyar, J, Naeini, F, Najafipour, F. Serum neuregulin 4 (NRG-4) level and nonalcoholic fatty liver disease (NAFLD): a case-control study. Int J Clin Pract 2021;75:e14555. https://doi.org/10.1111/ijcp.14555.Suche in Google Scholar PubMed

57. Guo, L, Zhang, P, Chen, Z, Xia, H, Li, S, Zhang, Y, et al.. Hepatic neuregulin 4 signaling defines an endocrine checkpoint for steatosis-to-NASH progression. J Clin Invest 2017;127:4449–61. https://doi.org/10.1172/JCI96324.Suche in Google Scholar PubMed PubMed Central

58. Pontes-da-Silva, RM, Marinho, TS, Cardoso, LEM, Mandarim-de-Lacerda, CA, Aguila, MB. Obese mice weight loss role on nonalcoholic fatty liver disease and endoplasmic reticulum stress treated by a GLP-1 receptor agonist. Int J Obes 2022;46:21–9. https://doi.org/10.1038/s41366-021-00955-7.Suche in Google Scholar PubMed

59. Bluher, M. Neuregulin 4: a “hotline” between brown fat and liver. Obesity 2019;27:1555–7. https://doi.org/10.1002/oby.22595.Suche in Google Scholar PubMed PubMed Central

60. Reis-Barbosa, PH, Marcondes-de-Castro, IA, Marinho, TS, Aguila, MB, Mandarim-de-Lacerda, CA. The mTORC1/AMPK pathway plays a role in the beneficial effects of semaglutide (GLP-1 receptor agonist) on the liver of obese mice. Clin Res Hepatol Gastroenterol 2022;46:101922. https://doi.org/10.1016/j.clinre.2022.101922.Suche in Google Scholar PubMed

61. Timmons, JA, Wennmalm, K, Larsson, O, Walden, TB, Lassmann, T, Petrovic, N, et al.. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci USA 2007;104:4401–6. https://doi.org/10.1073/pnas.0610615104.Suche in Google Scholar PubMed PubMed Central

62. Kong, X, Yao, T, Zhou, P, Kazak, L, Tenen, D, Lyubetskaya, A, et al.. Brown adipose tissue controls skeletal muscle function via the secretion of myostatin. Cell Metabol 2018;28:631–43 e3. https://doi.org/10.1016/j.cmet.2018.07.004.Suche in Google Scholar PubMed PubMed Central

63. Sharma, M, McFarlane, C, Kambadur, R, Kukreti, H, Bonala, S, Srinivasan, S. Myostatin: expanding horizons. IUBMB Life 2015;67:589–600. https://doi.org/10.1002/iub.1392.Suche in Google Scholar PubMed

64. Dong, J, Dong, Y, Dong, Y, Chen, F, Mitch, WE, Zhang, L. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross-talk between muscle and adipose tissues. Int J Obes 2016;40:434–42. https://doi.org/10.1038/ijo.2015.200.Suche in Google Scholar PubMed PubMed Central

65. Wang, L, Zheng, ZG, Meng, L, Zhu, L, Li, P, Chen, J, et al.. Statins induce skeletal muscle atrophy via GGPP depletion-dependent myostatin overexpression in skeletal muscle and brown adipose tissue. Cell Biol Toxicol 2021;37:441–60. https://doi.org/10.1007/s10565-020-09558-w.Suche in Google Scholar PubMed

66. Fournier, B, Murray, B, Gutzwiller, S, Marcaletti, S, Marcellin, D, Bergling, S, et al.. Blockade of the activin receptor IIb activates functional brown adipogenesis and thermogenesis by inducing mitochondrial oxidative metabolism. Mol Cell Biol 2012;32:2871–9. https://doi.org/10.1128/MCB.06575-11.Suche in Google Scholar PubMed PubMed Central

67. Luheshi, GN. Cytokines and fever. Mechanisms and sites of action. Ann N Y Acad Sci 1998;856:83–9. https://doi.org/10.1111/j.1749-6632.1998.tb08316.x.Suche in Google Scholar PubMed

68. Burysek, L, Houstek, J. beta-Adrenergic stimulation of interleukin-1 alpha and interleukin-6 expression in mouse brown adipocytes. FEBS Lett 1997;411:83–6. https://doi.org/10.1016/s0014-5793(97)00671-6.Suche in Google Scholar PubMed

69. Kirk, B, Feehan, J, Lombardi, G, Duque, G. Muscle, bone, and fat cross-talk: the biological role of myokines, osteokines, and adipokines. Curr Osteoporos Rep 2020;18:388–400. https://doi.org/10.1007/s11914-020-00599-y.Suche in Google Scholar PubMed

70. Egecioglu, E, Anesten, F, Schele, E, Palsdottir, V. Interleukin-6 is important for regulation of core body temperature during long-term cold exposure in mice. Biomed Rep 2018;9:206–12. https://doi.org/10.3892/br.Suche in Google Scholar

71. Li, G, Klein, RL, Matheny, M, King, MA, Meyer, EM, Scarpace, PJ. Induction of uncoupling protein 1 by central interleukin-6 gene delivery is dependent on sympathetic innervation of brown adipose tissue and underlies one mechanism of body weight reduction in rats. Neuroscience 2002;115:879–89. https://doi.org/10.1016/s0306-4522(02)00447-5.Suche in Google Scholar PubMed

72. Stanford, KI, Middelbeek, RJ, Townsend, KL, An, D, Nygaard, EB, Hitchcox, KM, et al.. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 2013;123:215–23. https://doi.org/10.1172/JCI62308.Suche in Google Scholar PubMed PubMed Central

73. Qing, H, Desrouleaux, R, Israni-Winger, K, Mineur, YS, Fogelman, N, Zhang, C, et al.. Origin and function of stress-induced IL-6 in murine models. Cell 2020;182:1660. https://doi.org/10.1016/j.cell.2020.08.044.Suche in Google Scholar PubMed

74. Li, H, Dong, M, Liu, W, Gao, C, Jia, Y, Zhang, X, et al.. Peripheral IL-6/STAT3 signaling promotes beiging of white fat. Biochim Biophys Acta Mol Cell Res 2021;1868:119080. https://doi.org/10.1016/j.bbamcr.2021.119080.Suche in Google Scholar PubMed

75. Han, MS, White, A, Perry, RJ, Camporez, JP, Hidalgo, J, Shulman, GI, et al.. Regulation of adipose tissue inflammation by interleukin 6. Proc Natl Acad Sci USA 2020;117:2751–60. https://doi.org/10.1073/pnas.1920004117.Suche in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hmbci-2022-0044).


Received: 2022-05-07
Accepted: 2022-09-20
Published Online: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Letter to the Editor
  3. The role of gut microbiota in etiopathogenesis of long COVID syndrome
  4. Original Articles
  5. Risk factors and inflammatory markers in acute coronary syndrome-ST elevation myocardial infarction (STEMI)
  6. Association of pro-inflammatory cytokines, inflammatory proteins with atherosclerosis index in obese male subjects
  7. Exploration of meteorin-like peptide (metrnl) predictors in type 2 diabetic patients: the potential role of irisin, and other biochemical parameters
  8. Distinct urinary progesterone metabolite profiles during the luteal phase
  9. Promoter methylation levels of RASSF1 and ATIC genes are associated with lung cancer in Iranian patients
  10. Population status of selenium in Colombia and associated factors: a cross-sectional study
  11. Bambusa vulgaris leaves reverse mitochondria dysfunction in diabetic rats through modulation of mitochondria biogenic genes
  12. Increased expression of androgen receptor and PSA genes in LNCaP (prostate cancer) cell line due to high concentrations of EGCG, an active ingredient in green tea
  13. The effects of endurance exercise and metformin on memory impairment caused by diabetes
  14. Exercise modulation in inflammation and metabolic hormonal disorders of COVID-19 to decrease risk factors in coronary heart disease
  15. The effect of co-administration of artemisinin and N-acetyl cysteine on antioxidant status, spermatological parameters and histopathology of testis in adult male mice
  16. Case Report
  17. Unilateral ovarian agenesis with ipsilateral tubal presence – report of a case
  18. Review Articles
  19. Brown adipose tissue as an endocrine organ: updates on the emerging role of batokines
  20. Zuranolone and its role in treating major depressive disorder: a narrative review
Heruntergeladen am 7.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hmbci-2022-0044/pdf
Button zum nach oben scrollen