Startseite Exploration of meteorin-like peptide (metrnl) predictors in type 2 diabetic patients: the potential role of irisin, and other biochemical parameters
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Exploration of meteorin-like peptide (metrnl) predictors in type 2 diabetic patients: the potential role of irisin, and other biochemical parameters

  • Yaser Khajebishak , Amir Hossein Faghfouri , Ali Soleimani , Sadra Madani und Laleh Payahoo EMAIL logo
Veröffentlicht/Copyright: 3. Oktober 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Objectives

Meteorin-like peptide (Metrnl), the newly discovered adipokines involves in glucose and lipid metabolism and energy homeostasis. The aim of the present study was to explore the potential predictors of Metrnl by emphasizing the Irisin, glycemic indices, and lipid profile biomarkers in type 2 diabetic patients.

Methods

This cross-sectional study was carried out on 32 obese types 2 diabetic patients, 31 healthy obese, and 30 healthy normal weight people between August 2020 and March 2021. Serum Metrnl and Irisin, fasting blood glucose (FBS), fasting insulin (FI), fasting insulin (FI), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), HbA1c and eAG levels were measured in a standard manner. To assay insulin resistance and insulin sensitivity, the homeostatic model assessment insulin resistance (HOMA‐IR) and quantitative check index (QUICKI) model were used. Quantile regression analysis with the backward elimination method was used to explore predictors. The significant level was defined as p<0.05.

Results

Between variables entered into the model, only the group item showed to be the main predictor of Metrnl in type 2 diabetic patients. Besides, the serum level of Irisin was lower in diabetic patients, and a significant difference was detected between obese diabetic patients and the normal weight group (p=0.024).

Conclusions

Given the multi-causality of diabetes and also the possible therapeutic role of Metrnl in the management of type 2 diabetic patients’ abnormalities, designing future studies are needed to discover other predictors of Metrnl and the related mechanisms of Metrnl in the management of diabetes.


Corresponding author: Laleh Payahoo, Assistant Professor of Nutrition, Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran, Phone: +984137276363, E-mail:

  1. Research funding: The regional ethics committee of the Maragheh University of Medical Sciences approved the protocol of the study with registered ethics number “IR.MARAGHEHPHC.REC.1398.029”.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Conflicts of interest: Authors declare that there is no conflict of interest.

  4. Informed consent: A written consent form was completed for each participant.

References

1. Roglic, G, Unwin, N. Mortality attributable to diabetes: estimates for the year 2010. Diabetes Res Clin Pract 2010;87:15–9. https://doi.org/10.1016/j.diabres.2009.10.006.Suche in Google Scholar PubMed

2. Javanbakht, M, Baradaran, HR, Mashayekhi, A, Haghdoost, AA, Khamseh, ME, Kharazmi, E, et al.. Cost-of-illness analysis of type 2 diabetes mellitus in Iran. PLoS One 2011;6:1–7. https://doi.org/10.1371/journal.pone.0026864.Suche in Google Scholar PubMed PubMed Central

3. Aghili, R, Khamseh, ME, Malek, M, Yarahmadi, S, Farshchi, A. Structured self monitoring of blood glucose in Iranian people with type 2 diabetes; A cost consequence analysis. Daru 2012;20:1–6. https://doi.org/10.1186/2008-2231-20-32.Suche in Google Scholar PubMed PubMed Central

4. Wild, S, Roglic, G, Green, A, Sicree, R, King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:1047–53. https://doi.org/10.2337/diacare.27.5.1047.Suche in Google Scholar PubMed

5. Mirzaei, M, Rahmaninan, M, Mirzaei, M, Nadjarzadeh, A. Epidemiology of diabetes mellitus, pre-diabetes, undiagnosed and uncontrolled diabetes in Central Iran: results from Yazd health study. BMC Publ Health 2020;20:1–9. https://doi.org/10.1186/s12889-020-8267-y.Suche in Google Scholar PubMed PubMed Central

6. Zheng, Y, Ley, SH, Hu, FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018;14:88–98. https://doi.org/10.1038/nrendo.2017.151.Suche in Google Scholar PubMed

7. Sobel, BE, Schneider, DJ. Cardiovascular complications in diabetes mellitus. Curr Opin Pharmacol 2005;5:143–8. https://doi.org/10.1016/j.coph.2005.01.002.Suche in Google Scholar PubMed

8. Schofield, JD, Liu, Y, Rao-Balakrishna, P, Malik, RA, Soran, H, Dyslipidemia, D. Diabetes Therapy 2016;7:203–19. https://doi.org/10.1007/s13300-016-0167-x.Suche in Google Scholar PubMed PubMed Central

9. Tangvarasittichai, S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 2015;6:456–80. https://doi.org/10.4239/wjd.v6.i3.456.Suche in Google Scholar PubMed PubMed Central

10. Gastaldelli, A. Role of beta-cell dysfunction, ectopic fat accumulation and insulin resistance in the pathogenesis of type 2 diabetes mellitus. Diabetes Res Clin Pract 2011;93:S60–5. https://doi.org/10.1016/s0168-8227(11)70015-8.Suche in Google Scholar

11. Rabe, K, Lehrke, M, Parhofer, KG, Broedl, UC. Adipokines and insulin resistance. Mol Med 2008;14:741–51. https://doi.org/10.2119/2008-00058.rabe.Suche in Google Scholar PubMed PubMed Central

12. Emamgholipour, S, Moradi, N, Beigy, M, Shabani, P, Fadaei, R, Poustchi, H, et al.. The association of circulating levels of complement-C1q TNF-related protein 5 (CTRP5) with nonalcoholic fatty liver disease and type 2 diabetes: a case–control study. Diabetol Metab Syndrome 2015;7:1–12. https://doi.org/10.1186/s13098-015-0099-z.Suche in Google Scholar PubMed PubMed Central

13. Fadaei, R, Moradi, N, Baratchian, M, Aghajani, H, Malek, M, Fazaeli, AA, et al.. Association of C1q/TNF-related protein-3 (CTRP3) and CTRP13 serum levels with coronary artery disease in subjects with and without type 2 diabetes mellitus. Plos One 2016;11:1–14. https://doi.org/10.1371/journal.pone.0168773.Suche in Google Scholar PubMed PubMed Central

14. Nagaya, T, Yoshida, H, Takahashi, H, Kawai, M. Increases in body mass index, even within non-obese levels, raise the risk for Type 2 diabetes mellitus: a follow-up study in a Japanese population. Diabet Med 2005;22:1107–11. https://doi.org/10.1111/j.1464-5491.2005.01602.x.Suche in Google Scholar PubMed

15. Lewis, GF, Carpentier, A, Adeli, K, Giacca, A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 2002;23:201–29. https://doi.org/10.1210/edrv.23.2.0461.Suche in Google Scholar PubMed

16. Freitas Lima, LC, Braga, VA, do Socorro de França Silva, M, Cruz, JC, Sousa Santos, SH, de Oliveira Monteiro, MM. Balarini CdM: adipokines, diabetes and atherosclerosis: an inflammatory association. Front Physiol 2015;6:304–15. https://doi.org/10.3389/fphys.2015.00304.Suche in Google Scholar PubMed PubMed Central

17. Blüher, M. Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes 2009;117:241–50.10.1055/s-0029-1192044Suche in Google Scholar PubMed

18. Ouchi, N, Parker, JL, Lugus, JJ, Walsh, K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol 2011;11:85–97. https://doi.org/10.1038/nri2921.Suche in Google Scholar PubMed PubMed Central

19. Hong, JH, Chung, HK, Park, HY, Joung, KH, Lee, JH, Jung, JG, et al.. GDF15 is a novel biomarker for impaired fasting glucose. Diabetes Metab J 2014;38:472–9. https://doi.org/10.4093/dmj.2014.38.6.472.Suche in Google Scholar PubMed PubMed Central

20. Zheng, S-l, Li, ZY, Song, J, Liu, JM, Miao, C-Y. Metrnl: a secreted protein with new emerging functions. Acta Pharmacol Sin 2016;37:571–9. https://doi.org/10.1038/aps.2016.9.Suche in Google Scholar PubMed PubMed Central

21. Löffler, D, Landgraf, K, Rockstroh, D, Schwartze, J, Dunzendorfer, H, Kiess, W, et al.. METRNL decreases during adipogenesis and inhibits adipocyte differentiation leading to adipocyte hypertrophy in humans. Int J Obes 2017;41:112–9. https://doi.org/10.1038/ijo.2016.180.Suche in Google Scholar PubMed

22. Saeidi, A, Tayebi, SM, Khosravi, A, Malekian, F, Khodamoradi, A, Sellami, M, et al.. Effects of exercise training on type 2-diabetes: the role of Meteorin-like protein. Health Promot Perspect 2019;9:89–91. https://doi.org/10.15171/hpp.2019.12.Suche in Google Scholar PubMed PubMed Central

23. Rao, RR, Long, JZ, White, JP, Svensson, KJ, Lou, J, Lokurkar, I, et al.. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 2014;157:1279–91. https://doi.org/10.1016/j.cell.2014.03.065.Suche in Google Scholar PubMed PubMed Central

24. Zeiaadini Dashtkhaki, L, Rashid Lamir, A, Naghibi, S. The effect of aquatic and dryland resistance training on peroxisome proliferator activated receptor-ɑ gene expression in middle-aged women’s peripheral blood mononuclear cell after coronary artery bypass grafting. Ann Appl Sport Sci 2017;5:13–22. https://doi.org/10.29252/aassjournal.5.4.13.Suche in Google Scholar

25. Li, Z-Y, Song, J, Zheng, S-L, Fan, M-B, Guan, Y-F, Qu, Y, et al.. Adipocyte Metrnl antagonizes insulin resistance through PPARγ signaling. Diabetes 2015;64:4011–22. https://doi.org/10.2337/db15-0274.Suche in Google Scholar PubMed

26. Esterbauer, H, Oberkofler, H, Krempler, F, Patsch, W. Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. Genomics 1999;62:98–102. https://doi.org/10.1006/geno.1999.5977.Suche in Google Scholar PubMed

27. Lee, P, Linderman, JD, Smith, S, Brychta, RJ, Wang, J, Idelson, C, et al.. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metabol 2014;19:302–9. https://doi.org/10.1016/j.cmet.2013.12.017.Suche in Google Scholar PubMed PubMed Central

28. Panati, K, Suneetha, Y, Narala, V. Irisin/FNDC5-An updated review. Eur Rev Med Pharmacol Sci 2016;20:689–97.Suche in Google Scholar

29. Boström, P, Wu, J, Jedrychowski, MP, Korde, A, Ye, L, Lo, JC, et al.. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012;481:463–8. https://doi.org/10.1038/nature10777.Suche in Google Scholar PubMed PubMed Central

30. Stanford, KI, Middelbeek, RJ, Townsend, KL, An, D, Nygaard, EB, Hitchcox, KM, et al.. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 2012;123:215–23. https://doi.org/10.1172/jci62308.Suche in Google Scholar

31. Lee, JH, Kang, YE, Kim, JM, Choung, S, Joung, KH, Kim, HJ, et al.. Serum Meteorin-like protein levels decreased in patients newly diagnosed with type 2 diabetes. Diabetes Res Clin Pract 2018;135:7–10. https://doi.org/10.1016/j.diabres.2017.10.005.Suche in Google Scholar PubMed

32. Fadaei, R, Dadmanesh, M, Moradi, N, Ahmadi, R, Shokoohi Nahrkhalaji, A, Aghajani, H, et al.. Serum levels of subfatin in patients with type 2 diabetes mellitus and its association with vascular adhesion molecules. Arch Physiol Biochem 2020;126:335–40. https://doi.org/10.1080/13813455.2018.1538248.Suche in Google Scholar PubMed

33. AlKhairi, I, Cherian, P, Abu-Farha, M, Madhoun, AA, Nizam, R, Melhem, M, et al.. Increased expression of meteorin-like hormone in type 2 diabetes and obesity and its association with irisin. Cells 2019;8:1283–98. https://doi.org/10.3390/cells8101283.Suche in Google Scholar PubMed PubMed Central

34. Gutch, M, Kumar, S, Razi, SM, Gupta, KK, Gupta, A. Assessment of insulin sensitivity/resistance. Indian J Endocrinol Metab 2015;19:160. https://doi.org/10.4103/2230-8210.146874.Suche in Google Scholar PubMed PubMed Central

35. Ushach, I, Burkhardt, AM, Martinez, C, Hevezi, PA, Gerber, PA, Buhren, BA, et al.. METEORIN-LIKE is a cytokine associated with barrier tissues and alternatively activated macrophages. Clin Immunol 2015;156:119–27. https://doi.org/10.1016/j.clim.2014.11.006.Suche in Google Scholar PubMed PubMed Central

36. El-Ashmawy, HM, Selim, FO, Hosny, TA, Almassry, HN. Association of low serum Meteorin like (Metrnl) concentrations with worsening of glucose tolerance, impaired endothelial function and atherosclerosis. Diabetes Res Clin Pract 2019;150:57–63. https://doi.org/10.1016/j.diabres.2019.02.026.Suche in Google Scholar PubMed

37. Wang, R, Hu, D, Zhao, X, Hu, W. Correlation of serum meteorin-like concentrations with diabetic nephropathy. Diabetes Res Clin Pract 2020;169:1–6. https://doi.org/10.1016/j.diabres.2020.108443.Suche in Google Scholar PubMed

38. Wang, C, Pan, Y, Song, J, Sun, Y, Li, H, Chen, L, et al.. Serum metrnl level is correlated with insulin resistance, but not with β-Cell function in type 2 diabetics. Med Sci Mon Int Med J Exp Clin Res: Int J Clin Exp 2019;25:8968. https://doi.org/10.12659/msm.920222.Suche in Google Scholar

39. Zheng, S, Zhou, H, Han, T, Li, Y, Zhang, Y, Liu, W, et al.. Clinical characteristics and beta cell function in Chinese patients with newly diagnosed type 2 diabetes mellitus with different levels of serum triglyceride. BMC Endocr Disord 2015;15:1–7. https://doi.org/10.1186/s12902-015-0018-1.Suche in Google Scholar PubMed PubMed Central

40. Suchacki, KJ, Roberts, F, Lovdel, A, Farquharson, C, Morton, NM, MacRae, VE, et al.. Skeletal energy homeostasis: a paradigm of endocrine discovery. J Endocrinol 2017;234:R67–79. https://doi.org/10.1530/joe-17-0147.Suche in Google Scholar PubMed

41. Long, YC, Zierath, JR. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006;116:1776–83. https://doi.org/10.1172/jci29044.Suche in Google Scholar PubMed PubMed Central

42. Chavez, JA, Roach, WG, Keller, SR, Lane, WS, Lienhard, GE. Inhibition of GLUT4 translocation by Tbc1d1, a Rab GTPase-activating protein abundant in skeletal muscle, is partially relieved by AMP-activated protein kinase activation. J Biol Chem 2008;283:9187–95. https://doi.org/10.1074/jbc.m708934200.Suche in Google Scholar

43. Zisman, A, Peroni, OD, Abel, ED, Michael, MD, Mauvais-Jarvis, F, Lowell, BB, et al.. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med 2000;6:924–8. https://doi.org/10.1038/78693.Suche in Google Scholar PubMed

44. McFalls, EO, Hou, M, Bache, RJ, Best, A, Marx, D, Sikora, J, et al.. Activation of p38 MAPK and increased glucose transport in chronic hibernating swine myocardium. Am J Physiol Heart Circ Physiol 2004;287:1–7. https://doi.org/10.1152/ajpheart.01188.2003.Suche in Google Scholar PubMed

45. Lee, JO, Lee, HJ, Lee, YW, Han, JA, Kang, MJ, Moon, J, et al.. Meteorin-like (Metrnl) adipomyokine improves glucose tolerance in type 2 diabetes via AMPK pathway. BioRxiv 2018;420489. https://doi.org/10.1101/420489.Suche in Google Scholar

46. Zorzano, A, Palacin, M, Guma, A. Mechanisms regulating GLUT4 glucose transporter expression and glucose transport in skeletal muscle. Acta Physiol Scand 2005;183:43–58. https://doi.org/10.1111/j.1365-201x.2004.01380.x.Suche in Google Scholar

47. McGee, SL, Hargreaves, M. Histone modifications and exercise adaptations. J Appl Physiol 2011;110:258–63. https://doi.org/10.1152/japplphysiol.00979.2010.Suche in Google Scholar PubMed

48. Hu, W, Wang, R, Sun, B. Meteorin-like ameliorates β cell function by inhibiting β cell apoptosis of and promoting β cell proliferation via activating the WNT/β-catenin pathway. Front Pharmacol 2021;12:301–11. https://doi.org/10.3389/fphar.2021.627147.Suche in Google Scholar PubMed PubMed Central

49. Jung, TW, Lee, SH, Kim, H-C, Bang, JS, Abd El-Aty, AM, Hacımüftüoğlu, A, et al.. METRNL attenuates lipid-induced inflammation and insulin resistance via AMPK or PPARδ-dependent pathways in skeletal muscle of mice. Exp Mol Med 2018;50:1–11. https://doi.org/10.1038/s12276-018-0147-5.Suche in Google Scholar PubMed PubMed Central

50. Zhang, F, Lavan, BE, Gregoire, FM. Selective modulators of PPAR-γ activity: molecular aspects related to obesity and side-effects. Ppar Res 2007;2007:1–8. https://doi.org/10.1155/2007/32696.Suche in Google Scholar PubMed PubMed Central

51. Leonardini, A, Laviola, L, Perrini, S, Natalicchio, A, Giorgino, F. Cross-talk between PPAR and insulin signaling and modulation of insulin sensitivity. Ppar Res 2009;2009:1–13. https://doi.org/10.1155/2009/818945.Suche in Google Scholar PubMed PubMed Central

52. Khajebishak, Y, Payahoo, L, Hamishehkar, H, Alivand, M, Alipour, M, Solhi, M, et al.. Effect of pomegranate seed oil on the expression of PPAR-γ and pro-inflammatory biomarkers in obese type 2 diabetic patients. Nutr Food Sci 2019;49:854–65. https://doi.org/10.1108/nfs-10-2018-0298.Suche in Google Scholar

53. Liu, Z-X, Ji, H-H, Yao, M-P, Wang, L, Wang, Y, Zhou, P, et al.. Serum Metrnl is associated with the presence and severity of coronary artery disease. J Cell Mol Med 2019;23:271–80. https://doi.org/10.1111/jcmm.13915.Suche in Google Scholar PubMed PubMed Central

54. Benjamin, EJ, Blaha, MJ, Chiuve, SE, Cushman, M, Das, SR, Deo, R, et al.. Heart disease and stroke statistics—2017 update: a report from the American heart association. Circulation 2017;135:e146–603.10.1161/CIR.0000000000000491Suche in Google Scholar PubMed

55. Choi, YK, Kim, M-K, Bae, KH, Seo, HA, Jeong, JY, Lee, WK, et al.. Serum irisin levels in new-onset type 2 diabetes. Diabetes Res Clin Pract 2013;100:96–101. https://doi.org/10.1016/j.diabres.2013.01.007.Suche in Google Scholar PubMed

56. Kurdiova, T, Balaz, M, Vician, M, Maderova, D, Vlcek, M, Valkovic, L, et al.. Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies. J Physiol 2014;592:1091–107. https://doi.org/10.1113/jphysiol.2013.264655.Suche in Google Scholar PubMed PubMed Central

57. Gizaw, M, Anandakumar, P, Debela, T. A review on the role of irisin in insulin resistance and type 2 diabetes mellitus. J Pharmacopuncture 2017;20:235–42. https://doi.org/10.3831/KPI.2017.20.029.Suche in Google Scholar PubMed PubMed Central

58. Gutierrez-Repiso, C, Garcia-Serrano, S, Rodriguez-Pacheco, F, Garcia-Escobar, E, Haro-Mora, JJ, Garcia-Arnes, J, et al.. FNDC 5 could be regulated by leptin in adipose tissue. Eur J Clin Invest 2014;44:918–25.10.1111/eci.12324Suche in Google Scholar PubMed

59. Xiong, X-Q, Chen, D, Sun, H-J, Ding, L, Wang, J-J, Chen, Q, et al.. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochim Biophys Acta Mol Basis Dis 2015;1852:1867–75. https://doi.org/10.1016/j.bbadis.2015.06.017.Suche in Google Scholar PubMed

60. Carobbio, S, Guénantin, A-C, Samuelson, I, Bahri, M, Vidal-Puig, A. Brown and beige fat: from molecules to physiology and pathophysiology. Biochim Biophys Acta Mol Cell Biol Lipids 2019;1864:37–50. https://doi.org/10.1016/j.bbalip.2018.05.013.Suche in Google Scholar PubMed

61. Baar, K, Wende, AR, Jones, TE, Marison, M, Nolte, LA, Chen, M, et al.. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. Faseb J 2002;16:1879–86. https://doi.org/10.1096/fj.02-0367com.Suche in Google Scholar PubMed

62. Goto, M, Terada, S, Kato, M, Katoh, M, Yokozeki, T, Tabata, I, et al.. cDNA cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats. Biochem Biophys Res Commun 2000;274:350–4. https://doi.org/10.1006/bbrc.2000.3134.Suche in Google Scholar PubMed

63. Sinnreich, M, Taylor, BV, Dyck, PJB. Diabetic neuropathies: classification, clinical features, and pathophysiological basis. Neurol 2005;11:63–79. https://doi.org/10.1097/01.nrl.0000156314.24508.ed.Suche in Google Scholar PubMed

64. Jung, S, Kim, K. Exercise-induced PGC-1α transcriptional factors in skeletal muscle. Integr Med Res 2014;3:155–60. https://doi.org/10.1016/j.imr.2014.09.004.Suche in Google Scholar PubMed PubMed Central

65. Lira, VA, Benton, CR, Yan, Z, Bonen, A. PGC-1α regulation by exercise training and its influences on muscle function and insulin sensitivity. Am J Physiol Endocrinol Metab 2010;299:E145–61. https://doi.org/10.1152/ajpendo.00755.2009.Suche in Google Scholar PubMed PubMed Central

66. Schnyder, S, Handschin, C. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone 2015;80:115–25. https://doi.org/10.1016/j.bone.2015.02.008.Suche in Google Scholar PubMed PubMed Central

67. Kaneda, H, Nakajima, T, Haruyama, A, Shibasaki, I, Hasegawa, T, Sawaguchi, T, et al.. Association of serum concentrations of irisin and the adipokines adiponectin and leptin with epicardial fat in cardiovascular surgery patients. Plos One 2018;13:1–21. https://doi.org/10.1371/journal.pone.0201499.Suche in Google Scholar PubMed PubMed Central

68. Oshodi, T, Ebuehi, OA, Ojewunmi, O, Udenze, I, Soriyan, T. Circulating adipokine levels in type 2 diabetes mellitus in Lagos, Nigeria. Niger Q J Hosp Med 2012;22:25–8.10.1096/fasebj.26.1_supplement.759.14Suche in Google Scholar

69. Halaas, JL, Gajiwala, KS, Maffei, M, Cohen, SL, Chait, BT, Rabinowitz, D, et al.. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995;269:543–6. https://doi.org/10.1126/science.7624777.Suche in Google Scholar PubMed

70. Friedman, JM, Halaas, JL. Leptin and the regulation of body weight in mammals. Nature 1998;395:763–70. https://doi.org/10.1038/27376.Suche in Google Scholar PubMed

71. Maffei, M, Stoffel, M, Barone, M, Moon, B, Dammerman, M, Ravussin, E, et al.. Absence of mutations in the human OB gene in obese/diabetic subjects. Diabetes 1996;45:679–82. https://doi.org/10.2337/diabetes.45.5.679.Suche in Google Scholar

72. Payahoo, L, Ostadrahimi, A, Mobasseri, M, Bishak, YK, Jafarabadi, MA. Effects of zinc supplementation on serum leptin level and insulin sensitivity in obese people. Trace Elem Electrolytes 2014;31:27–32.10.5414/TEX01307Suche in Google Scholar

73. Wang, J, Obici, S, Morgan, K, Barzilai, N, Feng, Z, Rossetti, L. Overfeeding rapidly induces leptin and insulin resistance. Diabetes 2001;50:2786–91. https://doi.org/10.2337/diabetes.50.12.2786.Suche in Google Scholar PubMed

74. Yadav, A, Jain, S, Bhattacharjee, J. Correlation of adiponectin and leptin with insulin resistance: a pilot study in healthy north Indian population. Indian J Clin Biochem 2011;26:193–6. https://doi.org/10.1007/s12291-011-0119-1.Suche in Google Scholar PubMed PubMed Central

75. Rodríguez, A, Becerril, S, Méndez-Giménez, L, Ramírez, B, Sáinz, N, Catalán, V, et al.. Leptin administration activates irisin-induced myogenesis via nitric oxide-dependent mechanisms, but reduces its effect on subcutaneous fat browning in mice. Int J Obes 2015;39:397–407.10.1038/ijo.2014.166Suche in Google Scholar PubMed

Received: 2022-04-12
Accepted: 2022-08-21
Published Online: 2022-10-03

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Letter to the Editor
  3. The role of gut microbiota in etiopathogenesis of long COVID syndrome
  4. Original Articles
  5. Risk factors and inflammatory markers in acute coronary syndrome-ST elevation myocardial infarction (STEMI)
  6. Association of pro-inflammatory cytokines, inflammatory proteins with atherosclerosis index in obese male subjects
  7. Exploration of meteorin-like peptide (metrnl) predictors in type 2 diabetic patients: the potential role of irisin, and other biochemical parameters
  8. Distinct urinary progesterone metabolite profiles during the luteal phase
  9. Promoter methylation levels of RASSF1 and ATIC genes are associated with lung cancer in Iranian patients
  10. Population status of selenium in Colombia and associated factors: a cross-sectional study
  11. Bambusa vulgaris leaves reverse mitochondria dysfunction in diabetic rats through modulation of mitochondria biogenic genes
  12. Increased expression of androgen receptor and PSA genes in LNCaP (prostate cancer) cell line due to high concentrations of EGCG, an active ingredient in green tea
  13. The effects of endurance exercise and metformin on memory impairment caused by diabetes
  14. Exercise modulation in inflammation and metabolic hormonal disorders of COVID-19 to decrease risk factors in coronary heart disease
  15. The effect of co-administration of artemisinin and N-acetyl cysteine on antioxidant status, spermatological parameters and histopathology of testis in adult male mice
  16. Case Report
  17. Unilateral ovarian agenesis with ipsilateral tubal presence – report of a case
  18. Review Articles
  19. Brown adipose tissue as an endocrine organ: updates on the emerging role of batokines
  20. Zuranolone and its role in treating major depressive disorder: a narrative review
Heruntergeladen am 7.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hmbci-2022-0037/pdf?lang=de
Button zum nach oben scrollen