Home Technology A four port MIMO antenna using chip resistor based decoupling in 5G and 6G applications
Article
Licensed
Unlicensed Requires Authentication

A four port MIMO antenna using chip resistor based decoupling in 5G and 6G applications

  • Anandhan Chandrasekhar , Phani Kumar Polasi EMAIL logo and Ramasubramanian Bhoopalan
Published/Copyright: June 30, 2025
Become an author with De Gruyter Brill

Abstract

In this research, an L shaped four port MIMO antenna with chip resistor assisted H decoupling is designed. The proposed four port Multiple Input Multiple Output (MIMO) antenna can be applied over both 5G and 6G communication systems in the frequency range of 10 GHz–300 GHz. The antenna can resonate at three different frequencies such as 68.6667 GHz, 90 GHz, and 106.20 GHz. The MIMO antenna is intended on the Rogers RT DUROID 5880 substrate with a thickness of 0.5 mm, the relative permittivity of ε r = 2.2, and loss tangent of tanδ = 0.0009 and a Coplanar waveguide feed line is employed. The whole dimensions of the proposed antenna model is 20.6 × 22.5 × 0.5 mm3. To attain better isolation, T shaped defected ground structure (TDGS) is used in this research. The proposed antenna is analyzed under different parameters such as gain, return loss, Voltage Standing Wave Ratio (VSWR), axial ratio, and other diversity performances of MIMO antenna like Envelope correlation coefficient (ECC), Total Active Refection Coefficient (TARC), Mean Effective Coefficient (MEG) and Diversity Gain (DG). The proposed antenna can obtain return loss values of −18.5540 dB, −31.1488 dB, and −42.0233 dB at the resonating frequencies of 68.667 GHz, 90 GHz, and 105.2 GHz.


Corresponding author: Phani Kumar Polasi, Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Ramapuram, Chennai, Tamil Nadu 600089, India, E-mail:

  1. Research ethics: This article does not contain any studies with human participants or animals performed by any of the authors.

  2. Informed consent: Informed consent was obtained from all individuals included in this study.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: Authors state no conflict of interest.

  6. Research funding: No funding is provided for the preparation of manuscript.

  7. Data availability: Data sharing not applicable to this article.

References

[1] P. Pradeep, J. S. Kottareddygari, and C. S. Paidimarry, “A compact 4x4 peace-shaped wideband MIMO antenna for sub-6 GHz 5G wireless applications,” Int. J. Microw. Opt. Technol., vol. 17, no. 5, pp. 508–516, 2022.Search in Google Scholar

[2] Y. Fu, T. Shen, and J. Dou, “Mutual coupling reduction of a multiple-input multiple-output antenna using an absorber wall and a combline filter for V2X communication,” Sensors, vol. 23, no. 14, p. 6355, 2023. https://doi.org/10.3390/s23146355.Search in Google Scholar PubMed PubMed Central

[3] P. Garg and P. Jain, “Isolation improvement of MIMO antenna using a novel flower shaped metamaterial absorber at 5.5 GHz WiMAX band,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 4, pp. 675–679, 2019. https://doi.org/10.1109/tcsii.2019.2925148.Search in Google Scholar

[4] H. T. Chattha, “4-port 2-element MIMO antenna for 5G portable applications,” IEEE Access, vol. 7, pp. 96516–96520, 2019. https://doi.org/10.1109/access.2019.2925351.Search in Google Scholar

[5] J. C. Dash, S. Kharche, and G. S. Reddy, “MIMO antenna mutual coupling reduction using modified inverted-fork shaped structure,” IEEE Can. J. Electr. Comput. Eng., vol. 45, no. 4, pp. 375–382, 2022. https://doi.org/10.1109/icjece.2022.3201054.Search in Google Scholar

[6] J. Kulkarni, R. K. Gangwar, and J. Anguera, “Broadband and compact circularly polarized MIMO antenna with concentric rings and oval slots for 5G application,” IEEE Access, vol. 10, pp. 29925–29936, 2022. https://doi.org/10.1109/access.2022.3157914.Search in Google Scholar

[7] M. Y. Jamal, M. Li, and K. L. Yeung, “Isolation enhancement of closely packed dual circularly polarized MIMO antenna using hybrid technique,” IEEE Access, vol. 8, pp. 11241–11247, 2020. https://doi.org/10.1109/access.2020.2964902.Search in Google Scholar

[8] B. BharathiDevi and J. Kumar, “Small frequency range discrete bandwidth tunable multi-band MIMO antenna for radio/LTE/ISM-2.4 GHz band applications,” AEU-Int. J. Electron. Commun., vol. 144, 2022, Art. no. 154060. https://doi.org/10.1016/j.aeue.2021.154060.Search in Google Scholar

[9] P. Sharma, R. N. Tiwari, P. Singh, P. Kumar, and B. K. Kanaujia, “MIMO antennas: design approaches, techniques and applications,” Sensors, vol. 22, no. 20, p. 7813, 2022. https://doi.org/10.3390/s22207813.Search in Google Scholar PubMed PubMed Central

[10] C. Yu, S. Yang, Y. Chen, and W. Wang, “Investigation of a quad-band microstrip antenna using a DNG-MTM radiation patch,” J. Electromagn. Waves Appl., vol. 37, nos. 7–9, pp. 871–883, 2023. https://doi.org/10.1080/09205071.2023.2214683.Search in Google Scholar

[11] A. Biswas and V. R. Gupta, “Design and development of low profile MIMO antenna for 5G new radio smartphone applications,” Wirel. Pers. Commun., vol. 111, no. 3, pp. 1695–1706, 2020. https://doi.org/10.1007/s11277-019-06949-z.Search in Google Scholar

[12] A. T. Abed and A. M. Jawad, “Compact size MIMO amer fractal slot antenna for 3G, LTE (4G), WLAN, WiMAX, ISM and 5G communications,” IEEE Access, vol. 7, pp. 125542–125551, 2019. https://doi.org/10.1109/access.2019.2938802.Search in Google Scholar

[13] S. A. Khaleel, E. K. Hamad, N. O. Parchin, and M. B. Saleh, “MTM-inspired graphene-based THz MIMO antenna configurations using characteristic mode analysis for 6G/IoT applications,” Electronics, vol. 11, no. 14, p. 2152, 2022. https://doi.org/10.3390/electronics11142152.Search in Google Scholar

[14] P. Loktongbam, D. Pal, A. K. Bandyopadhyay, and C. Koley, “A brief review on mm-wave antennas for 5G and beyond applications,” IETE Tech. Rev., vol. 40, no. 3, pp. 397–422, 2023. https://doi.org/10.1080/02564602.2022.2121771.Search in Google Scholar

[15] Y. J. Guo, M. Ansari, R. W. Ziolkowski, and N. J. Fonseca, “Quasi-optical multi-beam antenna technologies for B5G and 6G mmWave and THz networks: a review,” IEEE Open J. Antennas Propag., vol. 2, pp. 807–830, 2021. https://doi.org/10.1109/ojap.2021.3093622.Search in Google Scholar

[16] S. K. Ibrahim, et al.., “Design, challenges and developments for 5G massive MIMO antenna systems at sub 6-GHz band: a review,” Nanomaterials, vol. 13, no. 3, p. 520, 2023. https://doi.org/10.3390/nano13030520.Search in Google Scholar PubMed PubMed Central

[17] A. M. Sabaawi, K. S. Muttair, O. A. Al-Ani, and Q. H. Sultan, “Dual-band MIMO antenna with defected ground structure for sub-6 GHz 5G applications,” Prog. Electromagn. Res. C, vol. 122, pp. 57–66, 2022. https://doi.org/10.2528/pierc22050703.Search in Google Scholar

[18] P. K. Sharma and N. Nallam, “A frequency-and-spatial blocker tolerant butler matrix based $4\times4 $ MIMO receiver using a switched-capacitor quadrature coupler,” in 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), IEEE, 2021, pp. 79–82.10.1109/RFIC51843.2021.9490440Search in Google Scholar

[19] Y. Li, L. A. Bian, Y. Liu, Y. Wang, R. Chen, and S. Xie, “Mutual coupling reduction for monopole MIMO antenna using l-shaped stubs, defective ground and chip resistors,” AEU-Int. J. Electron. Commun., vol. 160, 2023, Art. no. 154524. https://doi.org/10.1016/j.aeue.2022.154524.Search in Google Scholar

[20] M. A. Chung and C. W. Hsiao, “Dual-band 6× 6 MIMO antenna system for glasses applications compatible with Wi-Fi 6E and 7 wireless communication standards,” Electronics, vol. 11, no. 5, p. 806, 2022. https://doi.org/10.3390/electronics11050806.Search in Google Scholar

[21] A. Ahmad, D.-Y. Choi, and S. Ullah, “A compact two elements MIMO antenna for 5G communication,” Sci. Rep., vol. 12, no. 1, p. 3608, 2022. https://doi.org/10.1038/s41598-022-07579-5.Search in Google Scholar PubMed PubMed Central

[22] M. Aminu-Baba, et al.., “A compact triband miniaturized MIMO antenna for WLAN applications,” AEU-Int. J. Electron. Commun., vol. 136, 2021, Art. no. 153767. https://doi.org/10.1016/j.aeue.2021.153767.Search in Google Scholar

[23] S. Padmanathan, et al.., “Compact multi-band reconfigurable MIMO antenna for sub-6GHz 5G mobile terminal,” IEEE Access, vol. 10, pp. 60241–60252, 2022. https://doi.org/10.1109/access.2022.3180048.Search in Google Scholar

[24] F. M. Alnahwi, H. L. Swadi, and A. S. Abdullah, “Design and simulation of single and $2\times 2$ MIMO circularly polarized patch antennas with a pair of chip resistors for 5G applications,” in 2022 International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), IEEE, 2022, pp. 488–493.10.1109/ISMSIT56059.2022.9932653Search in Google Scholar

[25] A. Kumar, P. Pattanayak, R. K. Verma, D. Sabat, and G. Prasad, “Two-element MIMO antenna system for multi-band millimeter-wave, 5G mobile communication, Ka-band, and future 6G applications with SAR analysis,” AEU-Int. J. Electron. Commun., vol. 171, 2023, Art. no. 154876. https://doi.org/10.1016/j.aeue.2023.154876.Search in Google Scholar

[26] D. Dileepan, S. Natarajan, and R. Rajkumar, “A high isolation multiband mimo antenna without decoupling structure for wlan/wimax/5g applications,” Prog. Electromagn. Res. C, vol. 112, pp. 207–219, 2021. https://doi.org/10.2528/pierc21032605.Search in Google Scholar

[27] M. Hussain, W. A. Awan, M. S. Alzaidi, and D. H. Elkamchouchi, “Self-decoupled tri band MIMO antenna operating over ISM, WLAN and C-band for 5G applications,” Heliyon, vol. 9, no. 7, 2023. https://doi.org/10.1016/j.heliyon.2023.e17404.Search in Google Scholar PubMed PubMed Central

[28] M. S. Sharawi, S. K. Podilchak, M. T. Hussain, and Y. M. Antar, “Dielectric resonator based MIMO antenna system enabling millimetre‐wave mobile devices,” IET Microwaves Antennas Propag., vol. 11, no. 2, pp. 287–293, 2017. https://doi.org/10.1049/iet-map.2016.0457.Search in Google Scholar

Received: 2024-04-10
Accepted: 2024-12-18
Published Online: 2025-06-30
Published in Print: 2025-10-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/freq-2024-0103/pdf
Scroll to top button