Home Technology An ultraminiaturized implantable antenna with low SAR for biotelemetry
Article
Licensed
Unlicensed Requires Authentication

An ultraminiaturized implantable antenna with low SAR for biotelemetry

  • K. Ramasamy and B. A. Sapna ORCID logo EMAIL logo
Published/Copyright: March 3, 2025
Become an author with De Gruyter Brill

Abstract

Bio implants are popularized in health care industry for patient monitoring. This article presents an ultraminiaturized flexible slotted patch antenna with superstrate for bio implantable applications. The radiator is designed on Roger 6010 with dimension 5 × 6.2 × 0.508 mm3 which is 0.130 × 0.161 × 0.012λ g at 2.45 GHz. The superstrate ensures protection of body tissues and reduces SAR. Achieved gain and bandwidth of the antenna in free space are −27.07dBi and 30 MHz, respectively. Antenna bandwidth on body tissues like stomach, heart and liver are 124 MHz, 138 MHz and 175 MHz, respectively. SAR analysis is carried out using both homogeneous and heterogeneous human body models for 1 g and 10 g tissues during simulation. Head, heart, liver and stomach phantom shows simulated SAR value of 33.53 W/Kg, 52.49 W/Kg, 32.49 W/Kg and 31.37 W/Kg, respectively for 1 g tissue with 1 W input power and is within IEEE standard limit of 1.6 W/Kg with maximum allowable power of 47 mW, 30 mW, 48 mW and 50 mW. Performance validation of antenna is done with liver, heart and minced meat of pork for body tissues. Brain tissue is mimicked with saline solution. The link budget analysis is performed using NI-USRP 2920 module and LabVIEW with data transfer at a transmission rate of 1/2/5 Mbps and shows a wireless transmission link of 15 m for bio telemetry.


Corresponding author: B. A. Sapna, Department of Electronics and Communication Engineering, KIT Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, India, E-mail:

Award Identifier / Grant number: File No.8-122/FDC/ RPS/POLICY-1/2021-2022

Acknowledgement

This work is funded by All India Council for Technical Education, under research promotion scheme. File No.8-122/FDC/RPS/POLICY-1/2021-2022.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors declare that there are no conflicts of interest related to this article.

  6. Research funding: All India Council for Technical Education, under research promotion scheme. File No.8-122/FDC/ RPS/POLICY-1/2021-2022.

  7. Data availability: Not applicable.

References

[1] M. M. Soliman, M. E. H. Chowdhury, and A. Khandakar, “Review on medical implantable antenna technology and imminent research challenges,” Sensors, vol. 21, no. 9, p. 3163, 2021. https://doi.org/10.3390/s21093163.Search in Google Scholar PubMed PubMed Central

[2] A. Kiourti and K. S. Nikita, “A review of implantable patch antennas for biomedical telemetry: challenges and solutions,” IEEE Antenn. Propag. Mag., vol. 54, no. 3, pp. 210–228, 2012, https://doi.org/10.1109/MAP.2012.6293992.Search in Google Scholar

[3] N. A. Malik, P. Sant, T. Ajmal, and M. Ur-Rehman, “Implantable antennas for bio-medical applications,” IEEE J. Electromagn. RF Microw. Med. Biol., vol. 5, no. 1, pp. 84–96, 2021, https://doi.org/10.1109/JERM.2020.3026588.Search in Google Scholar

[4] M. R. K. M. Samy and A. Gudipalli, “A review on miniature bio-implant antenna performance enhancement and impact analysis on body fluids in medical application, Measurement,” Sensors, vol. 28, p. 100849, 2023. https://doi.org/10.1016/j.measen.2023.100849.Search in Google Scholar

[5] L. Berkelmann and D. Manteuffel, “Antenna parameters for on-body communications with wearable and implantable antennas,” IEEE Trans. Antenn. Propag., vol. 69, no. 9, pp. 5377–5387, 2021, https://doi.org/10.1109/TAP.2021.3060944.Search in Google Scholar

[6] Z. Huang, H. Wu, S. S. Mahmoud, and Q. Fang, “Design of a novel compact MICS band PIFA antenna for implantable biotelemetry applications,” Sensors, vol. 22, no. 21, p. 8182, 2022. https://doi.org/10.3390/s22218182.Search in Google Scholar PubMed PubMed Central

[7] W. Lei and Y.-X. Guo, “Miniaturized differentially fed dual-band implantable antenna: design, realization, and in vitro test,” Radio Sci., vol. 50, no. 10, pp. 959–967, 2015. https://doi.org/10.1002/2014RS005640.Search in Google Scholar

[8] S. Maity, K. R. Barman, and S. Bhattacharjee, “Silicon-based technology: circularly polarized microstrip patch antenna at ISM band with miniature structure using fractal geometry for biomedical application,” Microw. Opt. Technol. Lett., vol. 60, no. 1, pp. 93–101, 2017, https://doi.org/10.1002/mop.30925.Search in Google Scholar

[9] A. Kiourti, A. P. Konstantinos, J. R. Costa, C. A. Fernandes, and S. N. Konstantina, “Dual-band implantable antennas for medical telemetry: a fast design methodology and validation for intra-cranial pressure monitoring,” Prog. Electromagn. Res., vol. 141, pp. 161–183, 2013, https://doi.org/10.2528/PIER13051706.Search in Google Scholar

[10] M. W. A. Khan, E. Moradi, L. Sydänheimo, T. Björninen, Y. Rahmat-Samii, and L. Ukkonen, “Miniature coplanar implantable antenna on thin and flexible platform for fully wireless intracranial pressure monitoring system,” Int. J. Antennas Propag., vol. 2017, no. 1, pp. 1–9, 2017. https://doi.org/10.1155/2017/9161083.Search in Google Scholar

[11] F. Faisal, M. Zada, A. Ejaz, Y. Amin, S. Ullah, and H. Yoo, “A miniaturized dual-band implantable antenna system for medical applications,” IEEE Trans. Antenn. Propag., vol. 68, no. 2, pp. 1161–1165, 2020, https://doi.org/10.1109/TAP.2019.2938591.Search in Google Scholar

[12] S. A. A. Shah and H. Yoo, “Scalp-implantable antenna systems for intracranial pressure monitoring,” IEEE Trans. Antenn. Propag., vol. 66, no. 4, pp. 2170–2173, 2018. https://doi.org/10.1109/tap.2018.2801346.Search in Google Scholar

[13] W. Cui, R. Liu, L. Wang, M. Wang, and H. Zheng, “Design of wideband implantable antenna for wireless capsule endoscope system,” IEEE Antenn. Wirel. Propag. Lett., vol. 18, no. 12, pp. 2706–2710, 2019, https://doi.org/10.1109/LAWP.2019.2949630.Search in Google Scholar

[14] S. Hayat, S. A. A. Shah, and H. Yoo, “Miniaturized dual-band circularly polarized implantable antenna for capsule endoscopic system,” IEEE Trans. Antenn. Propag., vol. 69, no. 4, pp. 1885–1895, 2021, https://doi.org/10.1109/TAP.2020.3026881.Search in Google Scholar

[15] B. Biswas, A. Karmakar, and V. Chandra, “Hilbert curve inspired miniaturized MIMO antenna for wireless capsule endoscopy,” AEU-Int. J. Electron. Commun., vol. 137, p. 153819, 2021. https://doi.org/10.1016/j.aeue.2021.153819.Search in Google Scholar

[16] I. A. Shah, M. Zada, and H. Yoo, “Design and analysis of a compact-sized multiband spiral-shaped implantable antenna for scalp implantable and leadless pacemaker systems,” IEEE Trans. Antenn. Propag., vol. 67, no. 6, pp. 4230–4234, 2019, https://doi.org/10.1109/TAP.2019.2908252.Search in Google Scholar

[17] M. Zada, I. A. Shah, A. Basir, and H. Yoo, “Ultra-compact implantable antenna with enhanced performance for leadless cardiac pacemaker system,” IEEE Trans. Antenn. Propag., vol. 69, no. 2, pp. 1152–1157, 2021, https://doi.org/10.1109/TAP.2020.3008070.Search in Google Scholar

[18] Z.-J. Yang, S.-Q. Xiao, L. Zhu, B. Z. Wang, and H. L. Tu, “A circularly polarized implantable antenna for 2.4 GHz ISM band biomedical applications,” IEEE Antenn. Wirel. Propag. Lett., vol. 16, pp. 2554–2557, 2017. https://doi.org/10.1109/lawp.2017.2732460.Search in Google Scholar

[19] M. Bahrouni, G. Houzet, and T. P. Vuong, “Modeling of a compact, implantable, dual-band antenna for biomedical applications,” Electronics, vol. 12, no. 6, p. 1475, 2023, https://doi.org/10.3390/electronics12061475.Search in Google Scholar

[20] O. F. Celik and S. C. Basaran, “Compact triple-band implantable antenna for multitasking medical devices,” J. Electr. Eng., vol. 73, no. 3, pp. 166–173, 2022. https://doi.org/10.2478/jee-2022-0022.Search in Google Scholar

[21] M. Zada and H. Yoo, “A miniaturized triple-band implantable antenna system for bio-telemetry applications,” IEEE Trans. Antenn. Propag., vol. 66, no. 12, pp. 7378–7382, 2018, https://doi.org/10.1109/TAP.2018.2874681.Search in Google Scholar

[22] J. Zhang, R. Das, and D. Hoare, “A compact dual-band implantable antenna for wireless biotelemetry in arteriovenous grafts,” IEEE Trans. Antenn. Propag., vol. 71, no. 6, pp. 4759–4771, 2023, https://doi.org/10.1109/TAP.2023.3266786.Search in Google Scholar

[23] S. M. A. Shah, M. Zada, J. Nasir, O. Owais, and H. Yoo, “Ultraminiaturized triband antenna with reduced SAR for skin and deep tissue implants,” IEEE Trans. Antenn. Propag., vol. 70, no. 9, pp. 8518–8529, 2022, https://doi.org/10.1109/TAP.2022.3177487.Search in Google Scholar

[24] S. Manaf Ali Shah, M. Zada, J. Nasir, O. Owais, and H. Yoo, “Four-port triple-band implantable MIMO antenna for reliable data telemetry in wireless capsule endoscopy and deep tissue applications,” IEEE Trans. Antenn. Propag., vol. 72, no. 8, pp. 6229–6241, 2024, https://doi.org/10.1109/TAP.2024.3413341.Search in Google Scholar

[25] S. Das and D. Mitra, “A compact wideband flexible implantable slot antenna design with enhanced gain,” IEEE Trans. Antenn. Propag., vol. 66, no. 8, pp. 4309–4314, 2018, https://doi.org/10.1109/tap.2018.2836463.Search in Google Scholar

[26] M. Yousaf, I. B. Mabrouk, and M. Zada, “An ultra-miniaturized antenna with ultra-wide bandwidth characteristics for medical implant systems,” IEEE Access, vol. 9, pp. 40086–40097, 2021. https://doi.org/10.1109/ACCESS.2021.3064307.Search in Google Scholar

[27] http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php.Search in Google Scholar

[28] Lada, A. Maleckova, and P. Mik, “Porcine liver anatomy applied to biomedicine,” J. Surg. Res., vol. 250, pp. 70–79, 2020. https://doi.org/10.1016/j.jss.2019.12.038.Search in Google Scholar PubMed

[29] W. Wang, W. He, Y. Ruan, and Q. Geng, “First pig-to-human heart transplantation,” Innovation, vol. 3, no. 2, p. 100223, 2022, https://doi.org/10.1016/j.xinn.2022.100223.Search in Google Scholar PubMed PubMed Central

Received: 2024-10-29
Accepted: 2025-02-10
Published Online: 2025-03-03
Published in Print: 2025-10-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/freq-2024-0332/html
Scroll to top button