Startseite Technik A review on soft computing optimization techniques for electromagnetics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A review on soft computing optimization techniques for electromagnetics

  • Prashansa EMAIL logo , Bharat Singh und Nidhi Kushwaha
Veröffentlicht/Copyright: 16. Juni 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study delves various nature inspired soft computing optimization and their applications for solving complex electromagnetics optimization problems. As the discipline advances, the integration of soft computing and electromagnetics is expected to drive innovation and broaden the scope of various engineering fields. In the past, there have been efforts to exploit various nature based optimization techniques like Genetic Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Differential Evolution (DE), Evolutionary Strategy, Simulated Annealing (SA), Memetic Algorithm (MA), Bacteria Foraging Optimization (BFO), Comprehensive Learning Particle Swarm Optimization (CLPSO), Wind Driven Optimization (WDO) Technique and many more, for solving multi-modal and multi-dimension in area of electromagnetcis, communications, system identifications, power flow optimization, pattern recognition, biomedical, health-care and marketing management etc. Incorporating soft computing techniques – such as Neural Networks (NN), Wind Driven Optimization (WDO), and Genetic Algorithms (GA) etc. – into electromagnetics has demonstrated significant potential in overcoming complex challenges where traditional methods fall short. These methods enhance resilience against the inherent uncertainties and nonlinear characteristics of electromagnetic systems, leading to notable progress in design optimization, antenna pattern synthesis, and mitigating electromagnetic interference.


Corresponding author: Prashansa, Indian Institute of Information Technology Ranchi, Department of Computer Science and Engineering, Ranchi, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

[1] Yang, X.-S., Nature-Inspired Metaheuristic Algorithms, UK, Luniver Press, 2010.Suche in Google Scholar

[2] Brownlee, J., Clever Algorithms: Nature-Inspired Programming Recipes, Melbourne, Australia, Jason Brownlee, 2011.Suche in Google Scholar

[3] Holland, J. H., Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, Ann Arbor, Michigan, U Michigan Press, 1975.Suche in Google Scholar

[4] S. Kirkpatrick, C. D. GelattJr, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983. https://doi.org/10.1126/science.220.4598.671.Suche in Google Scholar PubMed

[5] Holland, J. H., Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, Massachusetts, United States, MIT Press, 1992.10.7551/mitpress/1090.001.0001Suche in Google Scholar

[6] Goldberg, D. E., Genetic Algorithms, Tamil Nadu, Pearson Education India, 2013.Suche in Google Scholar

[7] Price, K., Storn, R. M., and Lampinen, J. A., Differential Evolution: A Practical Approach to Global Optimization, Berlin, Germany, Springer Science & Business Media, 2006.Suche in Google Scholar

[8] Storn, R. and Price, K., “Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim., vol. 11, no. 4, pp. 341–359, 1997.https://doi.org/10.1023/a:1008202821328.10.1023/A:1008202821328Suche in Google Scholar

[9] A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution algorithm for numerical optimization,” in 2005 IEEE Congress on Evolutionary Computation, vol. 2, IEEE, 2005, pp. 1785–1791.10.1109/CEC.2005.1554904Suche in Google Scholar

[10] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution algorithm with strategy adaptation for global numerical optimization,” IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417, 2008. https://doi.org/10.1109/tevc.2008.927706.Suche in Google Scholar

[11] Koza, J. R., “Genetic programming as a means for programming computers by natural selection,” Stat. Comput., vol. 4, no. 2, pp. 87–112, 1994. https://doi.org/10.1007/bf00175355.Suche in Google Scholar

[12] Beyer, H.-G. and Schwefel, H.-P., “Evolution strategies–a comprehensive introduction,” Nat. Comput., vol. 1, no. 1, pp. 3–52, 2002.https://doi.org/10.1023/a:1015059928466.10.1023/A:1015059928466Suche in Google Scholar

[13] X. Pan and L. Jiao, “A granular agent evolutionary algorithm for classification,” Appl. Soft Comput., vol. 11, no. 3, pp. 3093–3105, 2011. https://doi.org/10.1016/j.asoc.2010.12.012.Suche in Google Scholar

[14] Deb, K., Multi-Objective Optimization using Evolutionary Algorithms, vol. 16, Chichester, UK, John Wiley & Sons, 2001.Suche in Google Scholar

[15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: Nsga-ii,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002. https://doi.org/10.1109/4235.996017.Suche in Google Scholar

[16] K. Suresh, D. Kundu, S. Ghosh, S. Das, A. Abraham, and S. Y. Han, “Multi-objective differential evolution for automatic clustering with application to micro-array data analysis,” Sensors, vol. 9, no. 05, pp. 3981–4004, 2009. https://doi.org/10.3390/s90503981.Suche in Google Scholar PubMed PubMed Central

[17] A. L. Coelho, E. Fernandes, and K. Faceli, “Inducing multi-objective clustering ensembles with genetic programming,” Neurocomputing, vol. 74, nos. 1–3, pp. 494–498, 2010. https://doi.org/10.1016/j.neucom.2010.09.014.Suche in Google Scholar

[18] L. Costa and P. Oliveira, “An evolution strategy for multiobjective optimization,” in Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), vol. 1, IEEE, 2002, pp. 97–102.10.1109/CEC.2002.1006216Suche in Google Scholar

[19] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach,” IEEE Trans. Evol. Comput., vol. 3, no. 4, pp. 257–271, 1999. https://doi.org/10.1109/4235.797969.Suche in Google Scholar

[20] D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates, “Pesa-ii: region-based selection in evolutionary multiobjective optimization,” in Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, 2001, pp. 283–290.Suche in Google Scholar

[21] P. Moscato, et al.., “On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms,” Caltech Concurrent Computation Program, C3P Report, vol. 826, p. 37, 1989.Suche in Google Scholar

[22] P. Merz, “Analysis of gene expression profiles: an application of memetic algorithms to the minimum sum-of-squares clustering problem,” BioSystems, vol. 72, nos. 1–2, pp. 99–109, 2003. https://doi.org/10.1016/s0303-2647(03)00137-0.Suche in Google Scholar PubMed

[23] X. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan, “A multi-facet survey on memetic computation,” IEEE Trans. Evol. Comput., vol. 15, no. 5, pp. 591–607, 2011. https://doi.org/10.1109/tevc.2011.2132725.Suche in Google Scholar

[24] Y.-S. Ong, M. H. Lim, and X. Chen, “Research frontier-memetic computation – past, present & future,” IEEE Comput. Intell. Mag., vol. 5, no. 2, p. 24, 2010.10.1109/MCI.2010.936309Suche in Google Scholar

[25] Z. W. Geem, J. H. Kim, and G. V. Loganathan, “A new heuristic optimization algorithm: harmony search,” Simulation, vol. 76, no. 2, pp. 60–68, 2001. https://doi.org/10.1177/003754970107600201.Suche in Google Scholar

[26] K. S. Lee and Z. W. Geem, “A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice,” Comput. Methods Appl. Mech. Eng., vol. 194, nos. 36–38, pp. 3902–3933, 2005. https://doi.org/10.1016/j.cma.2004.09.007.Suche in Google Scholar

[27] M. Eusuff, K. Lansey, and F. Pasha, “Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization,” Eng. Optim., vol. 38, no. 2, pp. 129–154, 2006. https://doi.org/10.1080/03052150500384759.Suche in Google Scholar

[28] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, “A simulated annealing-based multiobjective optimization algorithm: Amosa,” IEEE Trans. Evol. Comput., vol. 12, no. 3, pp. 269–283, 2008. https://doi.org/10.1109/tevc.2007.900837.Suche in Google Scholar

[29] J. D. Knowles and D. W. Corne, “M-paes: a memetic algorithm for multiobjective optimization,” in Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), vol. 1, IEEE, 2000, pp. 325–332.10.1109/CEC.2000.870313Suche in Google Scholar

[30] J. Ricart, G. Hüttemann, J. Lima, and B. Barán, “Multiobjective harmony search algorithm proposals,” Electron. Notes Theor. Comput. Sci., vol. 281, pp. 51–67, 2011. https://doi.org/10.1016/j.entcs.2011.11.025.Suche in Google Scholar

[31] Liu, J., Li, Z., Hu, X., Chen, Y., and Liu, F., “Multi-objective dynamic population shuffled frog-leaping biclustering of microarray data,” BMC Genomics, vol. 13, supp. 3, pp. 1–11, 2012. https://doi.org/10.1186/1471-2164-13-s3-s6.Suche in Google Scholar

[32] M. Dorigo, “Optimization, learning and natural algorithms,” Ph.D. thesis, Politecnico di Milano, 1992.Suche in Google Scholar

[33] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Trans. Syst. Man Cybern., Part B (Cybern.), vol. 26, no. 1, pp. 29–41, 1996. https://doi.org/10.1109/3477.484436.Suche in Google Scholar PubMed

[34] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning approach to the traveling salesman problem,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 53–66, 1997. https://doi.org/10.1109/4235.585892.Suche in Google Scholar

[35] M. Dorigo and G. Di Caro, “Ant colony optimization: a new meta-heuristic,” in Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 2, IEEE, 1999, pp. 1470–1477.10.1109/CEC.1999.782657Suche in Google Scholar

[36] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, IEEE, 1995, pp. 1942–1948.Suche in Google Scholar

[37] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, 1995, pp. 39–43.10.1109/MHS.1995.494215Suche in Google Scholar

[38] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput., vol. 6, no. 1, pp. 58–73, 2002. https://doi.org/10.1109/4235.985692.Suche in Google Scholar

[39] X. Hu, Y. Shi, and R. Eberhart, “Recent advances in particle swarm,” in Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), vol. 1, IEEE, 2004, pp. 90–97.Suche in Google Scholar

[40] B. Basturk, “An artificial bee colony (abc) algorithm for numeric function optimization,” in IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA, 2006, p. 12.Suche in Google Scholar

[41] D. Karaboga and B. Basturk, “Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems,” in International Fuzzy Systems Association World Congress, Springer, 2007, pp. 789–798.10.1007/978-3-540-72950-1_77Suche in Google Scholar

[42] Karaboga, D. and Basturk, B., “A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm,” J. Glob. Optim., vol. 39, pp. 459–471, 2007.10.1007/s10898-007-9149-xSuche in Google Scholar

[43] D. Karaboga and B. Basturk, “On the performance of artificial bee colony (abc) algorithm,” Appl. Soft Comput., vol. 8, no. 1, pp. 687–697, 2008. https://doi.org/10.1016/j.asoc.2007.05.007.Suche in Google Scholar

[44] X.-l. Li, “An optimizing method based on autonomous animats: fish-swarm algorithm,” Syst. Eng. Theory Pract., vol. 22, no. 11, pp. 32–38, 2002.Suche in Google Scholar

[45] X. Li, “A new intelligent optimization method-artificial fish school algorithm,” Doctor thesis of Zhejiang University, 2003.Suche in Google Scholar

[46] D. S. Santos, D. D. Oliveira, and A. L. Bazzan, “A multiagent, multiobjective clustering algorithm,” in Data Mining and Multi-Agent Integration, Springer, 2009, pp. 239–249.10.1007/978-1-4419-0522-2_16Suche in Google Scholar

[47] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, “Handling multiple objectives with particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 256–279, 2004. https://doi.org/10.1109/tevc.2004.826067.Suche in Google Scholar

[48] Akbari, R., Hedayatzadeh, R., Ziarati, K., and Hassanizadeh, B., “A multi-objective artificial bee colony algorithm,” Swarm Evol. Comput., vol. 2, no. 2012, pp. 39–52, 2012. https://doi.org/10.1016/j.swevo.2011.08.001.Suche in Google Scholar

[49] M. Jiang and K. Zhu, “Multiobjective optimization by artificial fish swarm algorithm,” in 2011 IEEE International Conference on Computer Science and Automation Engineering, vol. 3, IEEE, 2011, pp. 506–511.10.1109/CSAE.2011.5952729Suche in Google Scholar

[50] Dasgupta, D., Artificial Immune Systems and their Applications, Berlin, Germany, Springer Science & Business Media, 2012.Suche in Google Scholar

[51] De Castro, L. N. and Timmis, J., Artificial Immune Systems: A New Computational Intelligence Approach, Berlin, Germany, Springer Science & Business Media, 2002.Suche in Google Scholar

[52] L. N. De Castro and F. J. Von Zuben, “Learning and optimization using the clonal selection principle,” IEEE Trans. Evol. Comput., vol. 6, no. 3, pp. 239–251, 2002. https://doi.org/10.1109/tevc.2002.1011539.Suche in Google Scholar

[53] D. Dasgupta, “Advances in artificial immune systems,” IEEE Comput. Intell. Mag., vol. 1, no. 4, pp. 40–49, 2006. https://doi.org/10.1109/ci-m.2006.248056.Suche in Google Scholar

[54] W. Tang, Q. Wu, and J. Saunders, “Bacterial foraging algorithm for dynamic environments,” in 2006 IEEE International Conference on Evolutionary Computation, 2006, pp. 1324–1330.10.1109/CEC.2006.1688462Suche in Google Scholar

[55] S. Mishra, “A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation,” IEEE Trans. Evol. Comput., vol. 9, no. 1, pp. 61–73, 2005. https://doi.org/10.1109/TEVC.2004.840144.Suche in Google Scholar

[56] A. Jain, A. Topchy, M. Law, and J. Buhmann, “Landscape of clustering algorithms,” in Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 1, 2004, pp. 260–263.10.1109/ICPR.2004.1334073Suche in Google Scholar

[57] A. Jain, R. Duin, and J. Mao, “Statistical pattern recognition: a review,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 1, pp. 4–37, 2000. https://doi.org/10.1109/34.824819.Suche in Google Scholar

[58] A. H. Gandomi and A. H. Alavi, “Krill herd: a new bio-inspired optimization algorithm,” Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 12, pp. 4831–4845, 2012. https://doi.org/10.1016/j.cnsns.2012.05.010.Suche in Google Scholar

[59] Coello, C. A. C. and Cortés, N. C., “Solving multiobjective optimization problems using an artificial immune system,” Genet. Program. Evolvable Mach., vol. 6, no. 2005, pp. 163–190, 2005. https://doi.org/10.1007/s10710-005-6164-x.Suche in Google Scholar

[60] B. Niu, H. Wang, L. Tan, and J. Xu, “Multi-objective optimization using bfo algorithm,” in Bio-Inspired Computing and Applications: 7th International Conference on Intelligent Computing, ICIC 2011, Zhengzhou, China, August 11-14. 2011, Revised Selected Papers 7, Springer, 2012, pp. 582–587.Suche in Google Scholar

[61] S.-C. Chu, P.-W. Tsai, and J.-S. Pan, “Cat swarm optimization,” in PRICAI 2006: Trends in Artificial Intelligence: 9th Pacific Rim International Conference on Artificial Intelligence Guilin, China, August 7-11, 2006 Proceedings 9, Springer, 2006, pp. 854–858.10.1007/978-3-540-36668-3_94Suche in Google Scholar

[62] S.-C. Chu, et al.., “Computational intelligence based on the behavior of cats,” Int. J. Innov. Comput. Inf. Control, vol. 3, no. 1, pp. 163–173, 2007.Suche in Google Scholar

[63] X.-S. Yang and S. Deb, “Cuckoo search via lévy flights,” in 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), IEEE, 2009, pp. 210–214.10.1109/NABIC.2009.5393690Suche in Google Scholar

[64] X.-S. Yang and S. Deb, “Engineering optimisation by cuckoo search,” Int. J. Math. Model. Numer. Optim., vol. 1, no. 4, pp. 330–343, 2010. https://doi.org/10.1504/ijmmno.2010.035430.Suche in Google Scholar

[65] S. Goel, A. Sharma, and P. Bedi, “Cuckoo search clustering algorithm: a novel strategy of biomimicry,” in 2011 World Congress on Information and Communication Technologies, IEEE, 2011, pp. 916–921.10.1109/WICT.2011.6141370Suche in Google Scholar

[66] X.-S. Yang, “Firefly algorithms for multimodal optimization,” in International Symposium on Stochastic Algorithms, Springer, 2009, pp. 169–178.10.1007/978-3-642-04944-6_14Suche in Google Scholar

[67] X.-S. Yang, “Firefly algorithm, stochastic test functions and design optimisation,” Int. J. Bio-Inspired Comput., vol. 2, no. 2, pp. 78–84, 2010. https://doi.org/10.1504/ijbic.2010.032124.Suche in Google Scholar

[68] A. R. Mehrabian and C. Lucas, “A novel numerical optimization algorithm inspired from weed colonization,” Ecol. Inform., vol. 1, no. 4, pp. 355–366, 2006. https://doi.org/10.1016/j.ecoinf.2006.07.003.Suche in Google Scholar

[69] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “Gsa: a gravitational search algorithm,” Inf. Sci., vol. 179, no. 13, pp. 2232–2248, 2009. https://doi.org/10.1016/j.ins.2009.03.004.Suche in Google Scholar

[70] P. Rabanal, I. Rodríguez, and F. Rubio, “Using river formation dynamics to design heuristic algorithms,” in International Conference on Unconventional Computation, Springer, 2007, pp. 163–177.10.1007/978-3-540-73554-0_16Suche in Google Scholar

[71] X.-S. Yang, “A new metaheuristic bat-inspired algorithm,” in Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Springer, 2010, pp. 65–74.10.1007/978-3-642-12538-6_6Suche in Google Scholar

[72] X.-S. Yang and A. Hossein Gandomi, “Bat algorithm: a novel approach for global engineering optimization,” Eng. Comput., vol. 29, no. 5, pp. 464–483, 2012. https://doi.org/10.1108/02644401211235834.Suche in Google Scholar

[73] P. M. Pradhan and G. Panda, “Solving multiobjective problems using cat swarm optimization,” Expert Syst. Appl., vol. 39, no. 3, pp. 2956–2964, 2012. https://doi.org/10.1016/j.eswa.2011.08.157.Suche in Google Scholar

[74] X.-S. Yang and S. Deb, “Multiobjective cuckoo search for design optimization,” Comput. Oper. Res., vol. 40, no. 6, pp. 1616–1624, 2013. https://doi.org/10.1016/j.cor.2011.09.026.Suche in Google Scholar

[75] Yang, X.-S., “Multiobjective firefly algorithm for continuous optimization,” Eng. Comput., vol. 29, no. 2013, pp. 175–184, 2013. https://doi.org/10.1007/s00366-012-0254-1.Suche in Google Scholar

[76] D. Kundu, K. Suresh, S. Ghosh, S. Das, B. K. Panigrahi, and S. Das, “Multi-objective optimization with artificial weed colonies,” Inf. Sci., vol. 181, no. 12, pp. 2441–2454, 2011. https://doi.org/10.1016/j.ins.2010.09.026.Suche in Google Scholar

[77] H. R. Hassanzadeh and M. Rouhani, “A multi-objective gravitational search algorithm,” in 2010 2nd International Conference on Computational Intelligence, Communication Systems and Networks, IEEE, 2010, pp. 7–12.10.1109/CICSyN.2010.32Suche in Google Scholar

[78] X.-S. Yang, “Bat algorithm for multi-objective optimisation,” Int. J. Bio-Inspired Comput., vol. 3, no. 5, pp. 267–274, 2011. https://doi.org/10.1504/ijbic.2011.042259.Suche in Google Scholar

[79] Zhang, J., Xiao, M., Gao, L., and Pan, Q., “Queuing search algorithm: a novel metaheuristic algorithm for solving engineering optimization problems,” Appl. Math. Model., vol. 63, no. 1, pp. 464–490, 2018. https://doi.org/10.1016/j.apm.2018.06.036.Suche in Google Scholar

[80] E. Fattahi, M. Bidar, and H. R. Kanan, “Focus group: an optimization algorithm inspired by human behavior,” Int. J. Comput. Intell. Appl., vol. 17, no. 01, 2018, Art. no. 1850002. https://doi.org/10.1142/s1469026818500025.Suche in Google Scholar

[81] Jangir, P., Parmar, S., and Trivedi, I., “Human behavior based optimization algorithm for optimal power flow problem with discrete and continuous control variables,” Int. J. Eng. Technol. Res. Manag., vol. 1, pp. 26–35, 2017.Suche in Google Scholar

[82] A. Azar, S. Seyedmirzaee, S. mirzaee, and S. moslem, “Providing new meta-heuristic algorithm for optimization problems inspired by humans’ behavior to improve their positions,” Int. J. Artif. Intell. Appl., vol. 4, no. 1, p. 1, 2013. https://doi.org/10.5121/ijaia.2013.4101.Suche in Google Scholar

[83] D. Simon, “Biogeography-based optimization,” IEEE Trans. Evol. Comput., vol. 12, no. 6, pp. 702–713, 2008. https://doi.org/10.1109/tevc.2008.919004.Suche in Google Scholar

[84] Goldberg, D. and Holland, J., “Genetic algorithms and machine learning,” in Proceedings of the Sixth Annual Conference on Computational Learning Theory, vol. 1, pp. 95–99, 1988.10.1023/A:1022602019183Suche in Google Scholar

[85] M. Dawoud, A. Tennant, and A. Anderson, “Null steering in adaptive arrays using a genetic algorithm,” in Microwave Conference, 1994. 24th European, vol. 2, IEEE, 1994, pp. 1108–1114.10.1109/EUMA.1994.337361Suche in Google Scholar

[86] A. Y. Qing, C. Lin, and Q. Y. Feng, “Synthesis of unequally spaced antenna arrays by using differential evolution,” IEEE Trans. Antennas Propag., vol. 58, no. 8, pp. 2553–2561, 2010. https://doi.org/10.1109/tap.2010.2048864.Suche in Google Scholar

[87] Bonabeau, E., Dorigo, M., and Theraulaz, G., Swarm Intelligence: From Natural to Artificial Systems, New York, United States, Oxford University Press, 1999.10.1093/oso/9780195131581.001.0001Suche in Google Scholar

[88] Kennedy, J., Kennedy, J. F., Eberhart, R. C., and Shi, Y., Swarm Intelligence, San Francisco, California, Morgan Kaufmann, 2001.Suche in Google Scholar

[89] Engelbrecht, A. P., Fundamentals of Computational Swarm Intelligence, New Jersey, United States, John Wiley & Sons, 2006.Suche in Google Scholar

[90] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural Networks, 1995. Proceedings., IEEE International Conference on, vol. 4, 1995, pp. 1942–1948.10.1109/ICNN.1995.488968Suche in Google Scholar

[91] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE Comput. Intell. Mag., vol. 1, no. 4, pp. 28–39, 2006. https://doi.org/10.1109/ci-m.2006.248054.Suche in Google Scholar

[92] Goudos, S. K., Moysiadou, V., Samaras, T., Siakavara, K., and Sahalos, J. N., “Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control,” IEEE Antennas Wirel. Propag. Lett., vol. 9, no. 1, pp. 125–129, 2010. https://doi.org/10.1109/lawp.2010.2044552.Suche in Google Scholar

[93] K. M. Passino, “Biomimicry of bacterial foraging for distributed optimization and control,” IEEE Control Syst., vol. 22, no. 3, pp. 52–67, 2002.10.1109/MCS.2002.1004010Suche in Google Scholar

[94] Shadravan, S., Naji, H. R., and Bardsiri, V. K., “The sailfish optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems,” Eng. Appl. Artif. Intell., vol. 80, no. 1, pp. 20–34, 2019. https://doi.org/10.1016/j.engappai.2019.01.001.Suche in Google Scholar

[95] Haldar, V. and Chakraborty, N., “A novel evolutionary technique based on electrolocation principle of elephant nose fish and shark: fish electrolocation optimization,” Soft Comput., vol. 21, no. 1, pp. 3827–3848, 2017. https://doi.org/10.1007/s00500-016-2033-1.Suche in Google Scholar

[96] T. R. Biyanto, et al.., “Killer whale algorithm: an algorithm inspired by the life of killer whale,” Procedia Comput. Sci., vol. 124, pp. 151–157, 2017. https://doi.org/10.1016/j.procs.2017.12.141.Suche in Google Scholar

[97] Mirjalili, S. and Lewis, A., “The whale optimization algorithm,” Adv. Eng. Softw., vol. 95, no. C, pp. 51–67, 2016. https://doi.org/10.1016/j.advengsoft.2016.01.008.Suche in Google Scholar

[98] M. Neshat, G. Sepidnam, M. Sargolzaei, and A. N. Toosi, “Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications,” Artif. Intell. Rev., vol. 42, no. 4, pp. 965–997, 2014. https://doi.org/10.1007/s10462-012-9342-2.Suche in Google Scholar

[99] A. Serani and M. Diez, “Dolphin pod optimization: a nature-inspired deterministic algorithm for simulation-based design,” in Machine Learning, Optimization, and Big Data: Third International Conference, MOD 2017, Volterra, Italy, September 14–17, 2017, Revised Selected Papers 3, Springer, 2018, pp. 50–62.10.1007/978-3-319-72926-8_5Suche in Google Scholar

[100] M. Hersovici, M. Jacovi, Y. S. Maarek, D. Pelleg, M. Shtalhaim, and S. Ur, “The shark-search algorithm. an application: tailored web site mapping,” Comput. Networks ISDN Syst., vol. 30, nos. 1–7, pp. 317–326, 1998. https://doi.org/10.1016/s0169-7552(98)00038-5.Suche in Google Scholar

[101] Arora, S. and Singh, S., “Butterfly optimization algorithm: a novel approach for global optimization,” Soft Comput., vol. 23, no. 3, pp. 715–734, 2019. https://doi.org/10.1007/s00500-018-3102-4.Suche in Google Scholar

[102] Niu, B. and Wang, H., “Bacterial colony optimization,” Discrete Dyn. Nat. Soc., vol. 1, no. 1, pp. 1–28, 2012. https://doi.org/10.1155/2012/698057.Suche in Google Scholar

[103] M. Naghdiani and M. Jahanshahi, “Gso: a new solution for solving unconstrained optimization tasks using garter snake’s behavior,” in 2017 International Conference on Computational Science and Computational Intelligence (CSCI), IEEE, 2017, pp. 328–333.10.1109/CSCI.2017.55Suche in Google Scholar

[104] M. Omran, I. Moukadem, S. Al-Sharhan, and M. Kinawi, “Stochastic diffusion search for continuous global optimization,” in International Conference on Swarm Intelligence (ICSI 2011), Cergy, France, 2011.Suche in Google Scholar

[105] Faisal, M., Mathkour, H., and Alsulaiman, M., “Antstar: enhancing optimization problems by integrating an ant system and a* algorithm,” Sci. Program., 2016, Art. no. 5136327. http://dx.doi.org/10.1155/2016/5136327.10.1155/2016/5136327Suche in Google Scholar

[106] T. Niknam, S. I. Taheri, J. Aghaei, S. Tabatabaei, and M. Nayeripour, “A modified honey bee mating optimization algorithm for multiobjective placement of renewable energy resources,” Appl. Energy, vol. 88, no. 12, pp. 4817–4830, 2011. https://doi.org/10.1016/j.apenergy.2011.06.023.Suche in Google Scholar

[107] Xu, W., Tian, S., Liu, Q., Xie, Y., Zhou, Z., and Pham, D. T., “An improved discrete bees algorithm for correlation-aware service aggregation optimization in cloud manufacturing,” Int. J. Adv. Des. Manuf. Technol., vol. 84, no. 1–4, pp. 17–28, 2016. https://doi.org/10.1007/s00170-015-7738-2.Suche in Google Scholar

[108] C. ZhaoHui and T. HaiYan, “Notice of retraction: cockroach swarm optimization,” in 2010 2nd International Conference on Computer Engineering and Technology, vol. 6, IEEE, 2010, pp. V6–V652.10.1109/ICCET.2010.5485993Suche in Google Scholar

[109] E. Cuevas, A. González, D. Zaldívar, and M. Pérez-Cisneros, “An optimisation algorithm based on the behaviour of locust swarms,” Int. J. Bio-Inspired Comput., vol. 7, no. 6, pp. 402–407, 2015. https://doi.org/10.1504/ijbic.2015.073178.Suche in Google Scholar

[110] S. Bitam, M. Batouche, and E.-g. Talbi, “A survey on bee colony algorithms,” in 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and phd Forum (ipdpsw), IEEE, 2010, pp. 1–8.10.1109/IPDPSW.2010.5470701Suche in Google Scholar

[111] Mirjalili, S., “Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm,” Knowl.-Based Syst., vol. 89, no. C, pp. 228–249, 2015. https://doi.org/10.1016/j.knosys.2015.07.006.Suche in Google Scholar

[112] A. Di Stefano, G. Cammarata, G. Morana, and D. Zito, “A4sdn-adaptive alienated ant algorithm for software-defined networking,” in 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), IEEE, 2015, pp. 344–350.10.1109/3PGCIC.2015.120Suche in Google Scholar

[113] X. Feng, F. C. Lau, and D. Gao, “A new bio-inspired approach to the traveling salesman problem,” in Complex Sciences: First International Conference, Complex 2009, Shanghai, China, February 23-25, 2009, Revised Papers, Part 2 1, Springer, 2009, pp. 1310–1321.10.1007/978-3-642-02469-6_12Suche in Google Scholar

[114] Mirjalili, S., “Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems,” Neural Comput. Appl., vol. 27, no. 4, pp. 1053–1073, 2016. https://doi.org/10.1007/s00521-015-1920-1.Suche in Google Scholar

[115] Mirjalili, S., “The ant lion optimizer,” Adv. Eng. Softw., vol. 83, no. C, pp. 80–98, 2015. https://doi.org/10.1016/j.advengsoft.2015.01.010.Suche in Google Scholar

[116] F. J. M. Garcia and J. A. M. Pérez, “Jumping frogs optimization: a new swarm method for discrete optimization,” Documentos de Trabajo del DEIOC 3, 2008.Suche in Google Scholar

[117] Y. Marinakis, M. Marinaki, and N. Matsatsinis, “A bumble bees mating optimization algorithm for global unconstrained optimization problems,” in Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Springer, 2010, pp. 305–318.10.1007/978-3-642-12538-6_26Suche in Google Scholar

[118] K. Krishnanand and D. Ghose, “Glowworm swarm optimisation: a new method for optimising multi-modal functions,” Int. J. Comput. Intell. Stud., vol. 1, no. 1, pp. 93–119, 2009. https://doi.org/10.1504/ijcistudies.2009.515637.Suche in Google Scholar

[119] James, J. and Li, V. O., “A social spider algorithm for global optimization,” Appl. Soft Comput., vol. 30, no. C, pp. 614–627, 2015. https://doi.org/10.1016/j.asoc.2015.02.014.Suche in Google Scholar

[120] M. M. Al-Rifaie, “Dispersive flies optimisation,” in 2014 Federated Conference on Computer Science and Information Systems, IEEE, 2014, pp. 529–538.10.15439/2014F142Suche in Google Scholar

[121] H. F. Wedde, M. Farooq, and Y. Zhang, “Beehive: an efficient fault-tolerant routing algorithm inspired by honey bee behavior,” in Ant Colony Optimization and Swarm Intelligence: 4th International Workshop, ANTS 2004, Brussels, Belgium, September 5-8, 2004. Proceedings 4, Springer, 2004, pp. 83–94.10.1007/978-3-540-28646-2_8Suche in Google Scholar

[122] Pan, W.-T., “A new fruit fly optimization algorithm: taking the financial distress model as an example,” Knowl.-Based Syst., vol. 26, no. 2, pp. 69–74, 2012. https://doi.org/10.1016/j.knosys.2011.07.001.Suche in Google Scholar

[123] C. Anandaraman, A. V. M. Sankar, and R. Natarajan, “A new evolutionary algorithm based on bacterial evolution and its application for scheduling a flexible manufacturing system,” J. Tek. Ind., vol. 14, no. 1, pp. 1–12, 2012. https://doi.org/10.9744/jti.14.1.1-12.Suche in Google Scholar

[124] Y. Djenouri, H. Drias, Z. Habbas, and H. Mosteghanemi, “Bees swarm optimization for web association rule mining,” in 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, vol. 3, IEEE, 2012, pp. 142–146.10.1109/WI-IAT.2012.148Suche in Google Scholar

[125] Merrikh-Bayat, F., “The runner-root algorithm: a metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature,” Appl. Soft Comput., vol. 33, no. C, pp. 292–303, 2015. https://doi.org/10.1016/j.asoc.2015.04.048.Suche in Google Scholar

[126] X.-S. Yang, “Flower pollination algorithm for global optimization,” in International Conference on Unconventional Computing and Natural Computation, Springer, 2012, pp. 240–249.10.1007/978-3-642-32894-7_27Suche in Google Scholar

[127] Y. Liu, J. Liu, L. Ma, and L. Tian, “Artificial root foraging optimizer algorithm with hybrid strategies,” Saudi J. Biol. Sci., vol. 24, no. 2, pp. 268–275, 2017. https://doi.org/10.1016/j.sjbs.2016.09.013.Suche in Google Scholar PubMed PubMed Central

[128] S. Karimkashi and A. A. Kishk, “Invasive weed optimization and its features in electromagnetics,” IEEE Trans. Antennas Propag., vol. 58, no. 4, pp. 1269–1278, 2010. https://doi.org/10.1109/tap.2010.2041163.Suche in Google Scholar

[129] Uymaz, S. A., Tezel, G., and Yel, E., “Artificial algae algorithm (aaa) for nonlinear global optimization,” Appl. Soft Comput., vol. 31, no. C, pp. 153–171, 2015. https://doi.org/10.1016/j.asoc.2015.03.003.Suche in Google Scholar

[130] Zhang, J., Zhou, Y., and Luo, Q., “Nature-inspired approach: a wind-driven water wave optimization algorithm,” Appl. Intell., vol. 49, no. 1, pp. 233–252, 2019. https://doi.org/10.1007/s10489-018-1265-4.Suche in Google Scholar

[131] Y. Shi, “Brain storm optimization algorithm,” in Advances in Swarm Intelligence: Second International Conference, ICSI 2011, Chongqing, China, June 12-15, 2011, Proceedings, Part I 2, Springer, 2011, pp. 303–309.Suche in Google Scholar

[132] Hansen, P., Mladenović, N., Brimberg, J., and Pérez, J. A. M., Variable Neighborhood Search, Cham, Switzerland, Springer, 2019.10.1007/978-3-319-91086-4_3Suche in Google Scholar

[133] H. Shah-Hosseini, “Otsu’s criterion-based multilevel thresholding by a nature-inspired metaheuristic called galaxy-based search algorithm,” in 2011 Third World Congress on Nature and Biologically Inspired Computing, IEEE, 2011, pp. 383–388.10.1109/NaBIC.2011.6089621Suche in Google Scholar

[134] Wedyan, A., et al.., “Hydrological cycle algorithm for continuous optimization problems,” J. Optim., vol. 1, pp. 1–25, 2017. https://doi.org/10.1155/2017/3828420.Suche in Google Scholar

[135] F. Hosseini and M. Kaedi, “A metaheuristic optimization algorithm inspired by the effect of sunlight on the leaf germination,” Int. J. Appl. Metaheuristic Comput. (IJAMC), vol. 9, no. 1, pp. 40–48, 2018. https://doi.org/10.4018/ijamc.2018010103.Suche in Google Scholar

[136] H. S. Hosseini, “Problem solving by intelligent water drops,” in 2007 IEEE Congress on Evolutionary Computation, IEEE, 2007, pp. 3226–3231.10.1109/CEC.2007.4424885Suche in Google Scholar

[137] Sun, G., Zhao, R., and Lan, Y., “Joint operations algorithm for large-scale global optimization,” Appl. Soft Comput., vol. 38, no. C, pp. 1025–1039, 2016. https://doi.org/10.1016/j.asoc.2015.10.047.Suche in Google Scholar

[138] M.-R. Chen, Y.-Z. Lu, and G. Yang, “Population-based extremal optimization with adaptive lévy mutation for constrained optimization,” in International Conference on Computational and Information Science, Springer, 2006, pp. 144–155.10.1007/978-3-540-74377-4_16Suche in Google Scholar

[139] H. Hajipour, H. Rostami, H. BehzadiKhourmuji, and R. J. Oskouei, “Odma: a new metaheuristic optimization algorithm based on open source development model,” in 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA), IEEE, 2012, pp. 758–763.10.1109/ISDA.2012.6416632Suche in Google Scholar

[140] Muthiah-Nakarajan, V. and Noel, M. M., “Galactic swarm optimization: a new global optimization metaheuristic inspired by galactic motion,” Appl. Soft Comput., vol. 38, no. C, pp. 771–787, 2016. https://doi.org/10.1016/j.asoc.2015.10.034.Suche in Google Scholar

[141] G. Dhiman and V. Kumar, “Spotted hyena optimizer for solving complex and non-linear constrained engineering problems,” in Harmony Search and Nature Inspired Optimization Algorithms: Theory and Applications, ICHSA 2018, Springer, 2019, pp. 857–867.10.1007/978-981-13-0761-4_81Suche in Google Scholar

[142] F. Zou, D. Chen, and J. Wang, “An improved teaching-learning-based optimization with the social character of pso for global optimization,” Comput. Intell. Neurosci., p. 18, 2016, https://doi.org/10.1155/2016/4561507.Suche in Google Scholar PubMed PubMed Central

[143] G.-G. Wang, S. Deb, and L. D. S. Coelho, “Elephant herding optimization,” in 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI), IEEE, 2015, pp. 1–5.10.1109/ISCBI.2015.8Suche in Google Scholar

[144] Chetty, S., et al.., “A study on the enhanced best performance algorithm for the just-in-time scheduling problem,” Discrete Dyn. Nat. Soc., vol. 1, pp. 1–12, 2015. https://doi.org/10.1155/2015/350308.Suche in Google Scholar

[145] M. Yazdani and F. Jolai, “Lion optimization algorithm (loa): a nature-inspired metaheuristic algorithm,” J. Comput. Des. Eng., vol. 3, no. 1, pp. 24–36, 2016. https://doi.org/10.1016/j.jcde.2015.06.003.Suche in Google Scholar

[146] T. Dash and P. K. Sahu, “Gradient gravitational search: an efficient metaheuristic algorithm for global optimization,” J. Comput. Chem., vol. 36, no. 14, pp. 1060–1068, 2015. https://doi.org/10.1002/jcc.23891.Suche in Google Scholar PubMed

[147] M. K. Ibrahim and R. S. Ali, “Novel optimization algorithm inspired by camel traveling behavior,” Iraqi J. Electr. Electron. Eng., vol. 12, no. 2, pp. 167–177, 2016. https://doi.org/10.33762/eeej.2016.118375.Suche in Google Scholar

[148] Li, W., et al.., “Cloud particles differential evolution algorithm: a novel optimization method for global numerical optimization,” Math. Probl. Eng., vol. 1, pp. 1–36, 2015. https://doi.org/10.1155/2015/497398.Suche in Google Scholar

[149] C.-C. Chen, et al.., “A novel metaheuristic: Jaguar algorithm with learning behavior,” in 2015 IEEE International Conference on Systems, Man, and Cybernetics, IEEE, 2015, pp. 1595–1600.10.1109/SMC.2015.282Suche in Google Scholar

[150] Mirjalili, S., Mirjalili, S. M., and Hatamlou, A., “Multi-verse optimizer: a nature-inspired algorithm for global optimization,” Neural Comput. Appl., vol. 27, no. 2, pp. 495–513, 2016. https://doi.org/10.1007/s00521-015-1870-7.Suche in Google Scholar

[151] S. Deb, S. Fong, and Z. Tian, “Elephant search algorithm for optimization problems,” in 2015 Tenth International Conference on Digital Information Management (ICDIM), IEEE, 2015, pp. 249–255.10.1109/ICDIM.2015.7381893Suche in Google Scholar

[152] A. Kaveh and V. R. Mahdavi, “Colliding bodies optimization: a novel meta-heuristic method,” Comput. Struct., vol. 139, pp. 18–27, 2014. https://doi.org/10.1016/j.compstruc.2014.04.005.Suche in Google Scholar

[153] Mirjalili, S., Mirjalili, S. M., and Lewis, A., “Grey wolf optimizer,” Adv. Eng. Softw., vol. 69, no. C, pp. 46–61, 2014. https://doi.org/10.1016/j.advengsoft.2013.12.007.Suche in Google Scholar

[154] A. Kaveh, M. A. Motie Share, and M. Moslehi, “Magnetic charged system search: a new meta-heuristic algorithm for optimization,” Acta Mech., vol. 224, no. 1, pp. 85–107, 2013. https://doi.org/10.1007/s00707-012-0745-6.Suche in Google Scholar

[155] S. L. Tilahun and H. C. Ong, “Prey-predator algorithm: a new metaheuristic algorithm for optimization problems,” Int. J. Inf. Technol. Decis. Mak., vol. 14, no. 06, pp. 1331–1352, 2015. https://doi.org/10.1142/s021962201450031x.Suche in Google Scholar

[156] A. Ibrahim, S. Rahnamayan, and M. V. Martin, “Simulated raindrop algorithm for global optimization,” in 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), IEEE, 2014, pp. 1–8.10.1109/CCECE.2014.6901103Suche in Google Scholar

[157] Odili, J. B., Kahar, M. N. M., and Anwar, S., “African buffalo optimization: a swarm-intelligence technique,” Procedia Comput. Sci., vol. 76, no. 1, pp. 443–448, 2015. https://doi.org/10.1016/j.procs.2015.12.291.Suche in Google Scholar

[158] M. Abdechiri, M. R. Meybodi, and H. Bahrami, “Gases brownian motion optimization: an algorithm for optimization (gbmo),” Appl. Soft Comput., vol. 13, no. 5, pp. 2932–2946, 2013. https://doi.org/10.1016/j.asoc.2012.03.068.Suche in Google Scholar

[159] Taherdangkoo, M., Paziresh, M., Yazdi, M., and Bagheri, M. H., “An efficient algorithm for function optimization: modified stem cells algorithm, Central European,” J. Eng., vol. 3, no. 1, pp. 36–50, 2013. https://doi.org/10.2478/s13531-012-0047-8.Suche in Google Scholar

[160] R. Oftadeh, M. Mahjoob, and M. Shariatpanahi, “A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search,” Comput. Math. Appl., vol. 60, no. 7, pp. 2087–2098, 2010. https://doi.org/10.1016/j.camwa.2010.07.049.Suche in Google Scholar

[161] Kaveh, A. and Khayatazad, M., “A new meta-heuristic method: ray optimization,” Comput. Struct., vol. 112, no. 1, pp. 283–294, 2012. https://doi.org/10.1016/j.compstruc.2012.09.003.Suche in Google Scholar

[162] Mucherino, A., Seref, O., Kundakcioglu, O. E., and Pardalos, P., “Monkey search: a novel metaheuristic search for global optimization,” AIP Conf. Proc., vol. 953, no. 1, pp. 162–173, 2007. https://doi.org/10.1063/1.2817338.Suche in Google Scholar

[163] Z. Bayraktar, M. Komurcu, J. a. Bossard, and D. H. Werner, “The wind driven optimization technique and its application in electromagnetics,” IEEE Trans. Antennas Propag., vol. 61, no. 5, pp. 2745–2757, 2013. https://doi.org/10.1109/tap.2013.2238654.Suche in Google Scholar

[164] P. Ranjan, S. K. Mahto, and A. Choubey, “Bwdo algorithm and its application in antenna array and pixelated metasurface synthesis,” IET Microw., Antennas Propag., vol. 13, no. 9, pp. 1263–1270, 2019. https://doi.org/10.1049/iet-map.2018.5051.Suche in Google Scholar

[165] X.-S. Yang and A. Slowik, “Firefly algorithm,” in Swarm Intelligence Algorithms, CRC Press, 2020, pp. 163–174.10.1201/9780429422614-13Suche in Google Scholar

[166] Panwar, R., Agarwala, V., and Singh, D., “Design and experimental verification of a thin broadband nanocomposite multilayer microwave absorber using genetic algorithm based approach,” AIP Conf. Proc., vol. 1620, no. 1, pp. 406–415, 2014. https://doi.org/10.1063/1.4898273.Suche in Google Scholar

[167] S. Chamaani, S. A. Mirtaheri, M. Teshnehlab, and M. A. Shooredeli, “Modified multi-objective particle swarm optimization for electromagnetic absorber design,” in Applied Electromagnetics, 2007. APACE 2007. Asia-Pacific Conference on, IEEE, 2007, pp. 1–5.10.1109/APACE.2007.4603923Suche in Google Scholar

[168] W. Zhang, L. Li, and F. Li, “Reducing the number of elements in linear and planar antenna arrays with sparseness constrained optimization,” IEEE Trans. Antennas Propag., vol. 59, no. 8, pp. 3106–3111, 2011. https://doi.org/10.1109/tap.2011.2158943.Suche in Google Scholar

[169] Sharifi, M. and Rezaei, P., “Retracted: minimizing cosecant-squared pattern side lobe level of linear array antenna by genetic algorithm and optimizing feed network,” AEU – Int. J. Electron. Commun., vol. 145, 2022.10.1016/j.aeue.2021.154076Suche in Google Scholar

[170] Zhu, X., Shao, W., Li, J.-L., and Dong, Y.-L., “Design and optimization of low rcs patch antennas based on a genetic algorithm,” Prog. Electromagn. Res., vol. 122, no. PIER11100703, pp. 327–339, 2012. https://doi.org/10.2528/pier11100703.Suche in Google Scholar

[171] Dib, N. I., Goudos, S. K., and Muhsen, H., “Application of taguchi’s optimization method and self-adaptive differential evolution to the synthesis of linear antenna arrays,” Prog. Electromagn. Res., vol. 102, no. pier09122306, pp. 159–180, 2010. https://doi.org/10.2528/pier09122306.Suche in Google Scholar

[172] S. K. Goudos, K. Siakavara, T. Samaras, E. E. Vafiadis, and J. N. Sahalos, “Self-adaptive differential evolution applied to real-valued antenna and microwave design problems,” IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1286–1298, 2011. https://doi.org/10.1109/tap.2011.2109678.Suche in Google Scholar

[173] Li, X., Li, W.-T., Shi, X.-W., Yang, J., and Yu, J.-F., “Modified differential evolution algorithm for pattern synthesis of antenna arrays,” Prog. Electromagn. Res., vol. 137, no. pier13011207, pp. 371–388, 2013. https://doi.org/10.2528/pier13011207.Suche in Google Scholar

[174] A. Yıldırım, M. R. Moule, and T. Yıldırım, “Design optimization of ultra wide band microstrip filter with differentional evolution algorithm,” Mugla J. Sci. Technol., vol. 3, no. 1, pp. 69–72, 2017. https://doi.org/10.22531/muglajsci.286267.Suche in Google Scholar

[175] S. K. Goudos, “Optimization of antenna arrays and microwave filters using differential evolution algorithms,” in Encyclopedia of Information Science and Technology, Fourth Edition, IGI Global, 2018, pp. 6595–6608.10.4018/978-1-5225-2255-3.ch572Suche in Google Scholar

[176] B. Al-Helali, “Genetic programming for symbolic regression on incomplete data,” Ph.D. thesis, Open Access Te Herenga Waka-Victoria University of Wellington, 2021.Suche in Google Scholar

[177] B. Al-Helali, Q. Chen, B. Xue, and M. Zhang, “Genetic programming-based feature selection for symbolic regression on incomplete data,” Evol. Comput., pp. 1–27, 2024, https://doi.org/10.1162/evco_a_00362.Suche in Google Scholar PubMed

[178] R. G. White, “Simulated annealing algorithm for radar cross-section estimation and segmentation,” in Applications of Artificial Neural Networks V, vol. 2243, SPIE, 1994, pp. 231–240.10.1117/12.169970Suche in Google Scholar

[179] S. Singh and K. Subba Rao, “Polyphase radar signal design using modified simulated annealing algorithm,” IETE J. Res., vol. 53, no. 2, pp. 173–182, 2007. https://doi.org/10.1080/03772063.2007.10876133.Suche in Google Scholar

[180] Y. Ahn, J. Park, C.-G. Lee, J.-W. Kim, and S.-Y. Jung, “Novel memetic algorithm implemented with ga (genetic algorithm) and mads (mesh adaptive direct search) for optimal design of electromagnetic system,” IEEE Trans. Magn., vol. 46, no. 6, pp. 1982–1985, 2010. https://doi.org/10.1109/tmag.2010.2043228.Suche in Google Scholar

[181] E. F. Wanner, F. G. Guimaraes, R. H. Takahashi, D. A. Lowther, and J. A. Ramirez, “Multiobjective memetic algorithms with quadratic approximation-based local search for expensive optimization in electromagnetics,” IEEE Trans. Magn., vol. 44, no. 6, pp. 1126–1129, 2008. https://doi.org/10.1109/tmag.2007.915814.Suche in Google Scholar

[182] S. Caorsi, A. Massa, M. Pastorino, and A. Randazzo, “Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 12, pp. 2745–2753, 2003. https://doi.org/10.1109/tgrs.2003.815676.Suche in Google Scholar

[183] Z. C. Zhang, X. H. Yu, and H. X. Sun, “Weighted subspace fitting doa estimation based on shuffled frog leaping algorithm,” Appl. Mech. Mater., vol. 411, pp. 1049–1052, 2013. https://doi.org/10.4028/www.scientific.net/amm.411-414.1049.Suche in Google Scholar

[184] P. Pechac, “Electromagnetic wave propagation modeling using the ant colony optimization algorithm,” Radioengineering-Prague-, vol. 11, no. 3, pp. 1–6, 2002.Suche in Google Scholar

[185] G. Zhang, H. Wang, W. Zhao, Z. Guan, and P. Li, “Application of improved multi-objective ant colony optimization algorithm in ship weather routing,” J. Ocean Univ. China, vol. 20, pp. 45–55, 2021. https://doi.org/10.1007/s11802-021-4436-6.Suche in Google Scholar

[186] F. Viani, F. Robol, M. Salucci, and R. Azaro, “Automatic emi filter design through particle swarm optimization,” IEEE Trans. Electromagn. Compat., vol. 59, no. 4, pp. 1079–1094, 2017. https://doi.org/10.1109/temc.2017.2652416.Suche in Google Scholar

[187] H. A. E.-A. Malhat and A. S. Zainud-Deen, “Beam-shaping technique for plasma magneto-electric dipole planar array based on time-modulation and particle swarm optimization,” Wirel. Networks, vol. 28, no. 7, pp. 3001–3018, 2022. https://doi.org/10.1007/s11276-022-03001-0.Suche in Google Scholar

[188] Li, X., Zhao, X., Wang, J., and Yin, M., “Improved artificial bee colony for design of a reconfigurable antenna array with discrete phase shifters,” Prog. Electromagn. Res. C, vol. 25, no. pierc11100803, pp. 193–208, 2012. https://doi.org/10.2528/pierc11100803.Suche in Google Scholar

[189] Y. Liu, X. Feng, L. Zhang, W. Hua, and K. Li, “A pareto artificial fish swarm algorithm for solving a multi-objective electric transit network design problem,” Transportmetrica: Transport Sci., vol. 16, no. 3, pp. 1648–1670, 2020. https://doi.org/10.1080/23249935.2020.1773574.Suche in Google Scholar

[190] J. Aguilar, “An artificial immune system for fault detection,” in International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Springer, 2004, pp. 219–228.10.1007/978-3-540-24677-0_24Suche in Google Scholar

[191] A. Abid, M. T. Khan, and M. S. Khan, “Multidomain features-based ga optimized artificial immune system for bearing fault detection,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 50, no. 1, pp. 348–359, 2017. https://doi.org/10.1109/tsmc.2017.2746762.Suche in Google Scholar

[192] Q. Jiang and F. Chang, “A novel antibody population optimization based artificial immune system for rotating equipment anomaly detection,” J. Mech. Sci. Technol., vol. 34, no. 9, pp. 3565–3574, 2020. https://doi.org/10.1007/s12206-020-0808-x.Suche in Google Scholar

[193] N. Gupta, J. Saxena, and K. S. Bhatia, “Optimized metamaterial-loaded fractal antenna using modified hybrid bf-pso algorithm,” Neural Comput. Appl., vol. 32, no. 11, pp. 7153–7169, 2020. https://doi.org/10.1007/s00521-019-04202-z.Suche in Google Scholar

[194] Guney, K. and Basbug, S., “Interference suppression of linear antenna arrays by amplitude-only control using a bacterial foraging algorithm,” Prog. Electromagn. Res., vol. 79, no. pier0711070, pp. 475–497, 2008. https://doi.org/10.2528/pier07110705.Suche in Google Scholar

[195] Lu, D.-j., Wang, X., Wu, X.-t., and Chen, Y., “Adaptive allocation strategy for cooperatively jamming netted radar system based on improved cuckoo search algorithm,” Def. Technol., vol. 24, no. 2, pp. 285–297, 2023. https://doi.org/10.1016/j.dt.2022.04.013.Suche in Google Scholar

[196] C. Raju, M. R. Raja, M. M. R. Paul, and M. L. Moses, “Optimization of beamforming in subarray antennas using firefly algorithm,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 1084, p. 012038, 2021.10.1088/1757-899X/1084/1/012038Suche in Google Scholar

[197] A. R. R. Mallahzadeh, H. Oraizi, and Z. Davoodi-Rad, “Application of the invasive weed optimization technique for antenna configurations,” Prog. Electromagn. Res., vol. 79, pp. 137–150, 2008. https://doi.org/10.2528/pier07092503.Suche in Google Scholar

[198] M. Amiri, S. H. Sedighy, and M. Hayati, “Design of compact microstrip lowpass elliptic filter with wide stop band using invasive weed optimization,” in 2014 22nd Iranian Conference on Electrical Engineering (ICEE), IEEE, 2014, pp. 1533–1536.10.1109/IranianCEE.2014.6999778Suche in Google Scholar

[199] P. Swain, S. K. Mohanty, and B. B. Mangaraj, “Linear dipole antenna array design and optimization using gravitational search algorithm,” in 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), IEEE, 2016, pp. 514–518.10.1109/AEEICB.2016.7538343Suche in Google Scholar

[200] M. A. Zafrane, M. A. Mebrek, H. Souillah, Z. B. Madouri, and B. Abes, “Novel design and optimization of s band patch antenna for space application by using a gravitational search algorithm,” Int. J. Interact. Des. Manuf. (IJIDeM), vol. 17, no. 3, pp. 1131–1148, 2023. https://doi.org/10.1007/s12008-022-01074-x.Suche in Google Scholar

[201] Y. Ge and K. Esselle, “Ga/fdtd technique for the design and optimisation of periodic metamaterials,” IET Microw., Antennas Propag., vol. 1, no. 1, pp. 158–164, 2007. https://doi.org/10.1049/iet-map:20050313.10.1049/iet-map:20050313Suche in Google Scholar

[202] L. Wang, T. Wang, Y. Nie, and R. Gong, “Synthesis design of metamaterial absorbers using a genetic algorithm,” in Signals Systems and Electronics (ISSSE), 2010 International Symposium on, vol. 1, IEEE, 2010, pp. 1–4.10.1109/ISSSE.2010.5607053Suche in Google Scholar

[203] S. Sui, et al.., “Ultra-wideband polarization conversion metasurface based on topology optimal design and geometry tailor,” in Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2015 IEEE MTT-S International Microwave Workshop Series on, IEEE, 2015, pp. 1–3.10.1109/IMWS-AMP.2015.7324906Suche in Google Scholar

[204] R. Basiri, H. Abiri, and A. Yahaghi, “Optimization of metamaterial structures for terahertz and microwave sensor applications,” Microw. Opt. Technol. Lett., vol. 56, no. 3, pp. 636–642, 2014. https://doi.org/10.1002/mop.28162.Suche in Google Scholar

[205] F. Ghezzo, L. Serafino, C. Ji, and R. Liu, “Surrogate modeling techniques for frequency-selective surfaces and metamaterials design,” in Antennas and Propagation (APCAP), 2014 3rd Asia-Pacific Conference on, IEEE, 2014, pp. 947–950.10.1109/APCAP.2014.6992659Suche in Google Scholar

[206] Zhao, M., et al.., “Novel absorber based on pixelated frequency selective surface using estimation of distribution algorithm,” IEEE Antennas Wirel. Propag. Lett., vol. 14, no. 2, pp. 1467–1470, 2015. https://doi.org/10.1109/lawp.2015.2411692.Suche in Google Scholar

[207] Y. Song, J. Ding, and C. Guo, “A semi-analytical numerical method for fast metamaterial absorber design,” AIP Adv., vol. 5, no. 9, 2015, Art. no. 097108. https://doi.org/10.1063/1.4930531.Suche in Google Scholar

[208] A. K. Zadeh and A. Karlsson, “Capacitive circuit method for fast and efficient design of wideband radar absorbers,” IEEE Trans. Antennas Propag., vol. 57, no. 8, pp. 2307–2314, 2009. https://doi.org/10.1109/tap.2009.2024490.Suche in Google Scholar

[209] Costa, F., Genovesi, S., and Monorchio, A., “A frequency selective absorbing ground plane for low-rcs microstrip antenna arrays,” Prog. Electromagn. Res., vol. 126, no. PIER12012904., pp. 317–332, 2012. https://doi.org/10.2528/pier12012904.Suche in Google Scholar

[210] S. Yagitani, K. Katsuda, M. Nojima, Y. Yoshimura, and H. Sugiura, “Imaging radio-frequency power distributions by an ebg absorber,” IEICE Trans. Commun., vol. 94, no. 8, pp. 2306–2315, 2011. https://doi.org/10.1587/transcom.e94.b.2306.Suche in Google Scholar

[211] E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the shockley-queisser limit,” Opt. Express, vol. 17, no. 17, pp. 15145–15159, 2009. https://doi.org/10.1364/oe.17.015145.Suche in Google Scholar PubMed

[212] H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics, vol. 3, no. 3, p. 148, 2009. https://doi.org/10.1038/nphoton.2009.3.Suche in Google Scholar

[213] T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett., vol. 34, no. 19, pp. 3012–3014, 2009. https://doi.org/10.1364/ol.34.003012.Suche in Google Scholar

[214] X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett., vol. 107, no. 4, 2011, Art. no. 045901. https://doi.org/10.1103/physrevlett.107.045901.Suche in Google Scholar

[215] J.-J. Greffet, “Applied physics: controlled incandescence,” Nature, vol. 478, no. 7368, p. 191, 2011. https://doi.org/10.1038/478191a.Suche in Google Scholar PubMed

[216] P. Ranjan, A. Choubey, S. K. Mahto, R. Sinha, and C. Barde, “A novel ultrathin wideband metamaterial absorber for x-band applications,” J. Electromagn. Waves Appl., vol. 33, no. 17, pp. 2341–2353, 2019. https://doi.org/10.1080/09205071.2019.1681299.Suche in Google Scholar

[217] S. Kent and M. Kartal, “Dielectric absorber design for wide band–wide oblique incidence angle using genetic algorithm,” AEU-Int. J. Electron. Commun., vol. 61, no. 6, pp. 398–404, 2007. https://doi.org/10.1016/j.aeue.2006.08.003.Suche in Google Scholar

[218] L. Jiang, J. Cui, L. Shi, and X. Li, “Pareto optimal design of multilayer microwave absorbers for wide-angle incidence using genetic algorithms,” IET Microw., Antennas Propag., vol. 3, no. 4, pp. 572–579, 2009. https://doi.org/10.1049/iet-map.2008.0059.Suche in Google Scholar

[219] Asi, M. and Dib, N. I., “Design of multilayer microwave broadband absorbers using central force optimization,” Prog. Electromagn. Res., vol. 26, no. pierb10090103, pp. 101–113, 2010. https://doi.org/10.2528/pierb10090103.Suche in Google Scholar

[220] Dib, N. I., Asi, M., and Sabbah, A., “On the optimal design of multilayer microwave absorbers,” Prog. Electromagn. Res., vol. 13, no. pierc10041310, pp. 171–185, 2010. https://doi.org/10.2528/pierc10041310.Suche in Google Scholar

[221] C. Lin, A. Qing, and J. Zang, “Design of wideband multilayer planar absorber using a new differential evolution algorithm,” in Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics 2014, Part I, vol. 9521, International Society for Optics and Photonics, 2015, p. 952117.10.1117/12.2176579Suche in Google Scholar

[222] Roy, S., Roy, S. D., Tewary, J., Mahanti, A., and Mahanti, G. K., “Particle swarm optimization for optimal design of broadband multilayer microwave absorber for wide angle of incidence,” Prog. Electromagn. Res. B, vol. 62, no. 1, 2015. https://doi.org/10.2528/pierb14122602.Suche in Google Scholar

[223] El-Hakim, H. A., Mahmoud, K. R., and Abdelaziz, A., “Design of compact double-layer microwave absorber for x-ku bands using genetic algorithm,” Prog. Electromagn. Res., vol. 65, no. pierb15111702, pp. 157–168, 2016. https://doi.org/10.2528/pierb15111702.Suche in Google Scholar

[224] Ranjan, P., Choubey, A., and Mahto, S. K., “A novel approach for optimal design of multilayer wideband microwave absorber using wind driven optimization technique,” AEU-Int. J. Electron. Commun., vol. 83, no. 3, pp. 81–87, 2018. https://doi.org/10.1016/j.aeue.2017.08.039.Suche in Google Scholar

[225] F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antennas Propag., vol. 58, no. 5, pp. 1551–1558, 2010. https://doi.org/10.1109/tap.2010.2044329.Suche in Google Scholar

[226] K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Experimental verification of metamaterial based subwavelength microwave absorbers,” J. Appl. Phys., vol. 108, no. 8, 2010, Art. no. 083113. https://doi.org/10.1063/1.3493736.Suche in Google Scholar

[227] B.-X. Wang, X. Zhai, G. Wang, W. Huang, and L. Wang, “Design of a four-band and polarization-insensitive terahertz metamaterial absorber,” IEEE Photon. J., vol. 7, no. 1, pp. 1–8, 2015. https://doi.org/10.1109/jphot.2014.2381633.Suche in Google Scholar

[228] Ranjan, P., Choubey, A., Mahto, S. K., and Sinha, R., “An ultrathin five-band polarization insensitive metamaterial absorber having hexagonal array of 2d-bravais-lattice,” Prog. Electromagn. Res. C, vol. 87, no. pierc18061907, pp. 13–23, 2018. https://doi.org/10.2528/pierc18061907.Suche in Google Scholar

[229] X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express, vol. 19, no. 10, pp. 9401–9407, 2011. https://doi.org/10.1364/oe.19.009401.Suche in Google Scholar PubMed

[230] D. Kern and D. Werner, “A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers,” Microw. Opt. Technol. Lett., vol. 38, no. 1, pp. 61–64, 2003. https://doi.org/10.1002/mop.10971.Suche in Google Scholar

[231] T. Liang, L. Li, J. Bossard, D. Werner, and T. Mayer, “Reconfigurable ultra-thin ebg absorbers using conducting polymers,” in 2005 IEEE Antennas and Propagation Society International Symposium, vol. 2, IEEE, 2005, pp. 204–207.10.1109/APS.2005.1551974Suche in Google Scholar

[232] Z. Wang, Z. Zhang, S. Qin, L. Wang, and X. Wang, “Theoretical study on wave-absorption properties of a structure with left-and right-handed materials,” Mater. Des., vol. 29, no. 9, pp. 1777–1779, 2008. https://doi.org/10.1016/j.matdes.2008.03.015.Suche in Google Scholar

[233] Z. Bayraktar, X. Wang, and D. H. Werner, “Thin composite matched impedance magneto-dielectric metamaterial absorbers,” in 2010 IEEE Antennas and Propagation Society International Symposium, IEEE, 2010, pp. 1–4.10.1109/APS.2010.5561772Suche in Google Scholar

[234] Z. H. Jiang, Q. Wu, X. Wang, and D. H. Werner, “Flexible wide-angle polarization-insensitive mid-infrared metamaterial absorbers,” in 2010 IEEE Antennas and Propagation Society International Symposium, IEEE, 2010, pp. 1–4.10.1109/APS.2010.5561241Suche in Google Scholar

[235] G. Mumcu, M. Valerio, K. Sertel, and J. Volakis, “Applications of the finite element method to designing composite metamaterials,” in 2007 International Conference on Electromagnetics in Advanced Applications, IEEE, 2007, pp. 818–821.10.1109/ICEAA.2007.4387429Suche in Google Scholar

[236] D. J. Kern and D. H. Werner, “The synthesis of metamaterial ferrites for rf applications using electromagnetic bandgap structures,” in IEEE Antennas and Propagation Society International Symposium. Digest. Held in Conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No. 03CH37450), vol. 1, IEEE, 2003, pp. 497–500.10.1109/APS.2003.1217505Suche in Google Scholar

[237] D. J. Kern, D. H. Werner, M. J. Wilhelm, and K. H. Church, “Genetically engineered multiband high-impedance frequency selective surfaces,” Microw. Opt. Technol. Lett., vol. 38, no. 5, pp. 400–403, 2003. https://doi.org/10.1002/mop.11073.Suche in Google Scholar

[238] J. A. Bossard, et al.., “Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals,” IEEE Trans. Antennas Propag., vol. 56, no. 5, pp. 1308–1320, 2008. https://doi.org/10.1109/tap.2008.922174.Suche in Google Scholar

[239] Z. Bayraktar, J. P. Turpin, and D. H. Werner, “Nature-inspired optimization of high-impedance metasurfaces with ultrasmall interwoven unit cells,” IEEE Antennas Wirel. Propag. Lett., vol. 10, pp. 1563–1566, 2011. https://doi.org/10.1109/LAWP.2011.2178224.Suche in Google Scholar

[240] L. Xin-yuan, F. Jia-hui, Z. Kuang, H. Jun, and W. Qun, “A compact wideband planar inverted-f antenna (pifa) loaded with metamaterial,” in Proceedings of 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, vol. 1, IEEE, 2011, pp. 549–551.10.1109/CSQRWC.2011.6037008Suche in Google Scholar

[241] Z. Bayraktar, D. H. Werner, and P. L. Werner, “Miniature meander-line dipole antenna arrays, designed via an orthogonal-array-initialized hybrid particle-swarm optimizer,” IEEE Antennas Propag. Mag., vol. 53, no. 3, pp. 42–59, 2011. https://doi.org/10.1109/MAP.2011.6028421.Suche in Google Scholar

[242] R. Azadegan and K. Sarabandi, “A novel approach for miniaturization of slot antennas,” IEEE Trans. Antennas Propag., vol. 51, no. 3, pp. 421–429, 2003. https://doi.org/10.1109/tap.2003.809853.Suche in Google Scholar

[243] F. Viani, M. Salucci, F. Robol, G. Oliveri, and A. Massa, “Design of a uhf rfid/gps fractal antenna for logistics management,” J. Electromagn. Waves Appl., vol. 26, no. 4, pp. 480–492, 2012. https://doi.org/10.1163/156939312800030640.Suche in Google Scholar

[244] Z. Bayraktar, P. Werner, and D. H. Werner, “The design of miniature three-element stochastic yagi-uda arrays using particle swarm optimization,” IEEE Antennas Wirel. Propag. Lett., vol. 5, pp. 22–26, 2006. https://doi.org/10.1109/lawp.2005.863618.Suche in Google Scholar

[245] D. Werner, D. Kern, and M. Bray, “Advances in ebg design concepts based on planar fss structures,” in Proceedings of the Loughborough Antennas and Propagation Conference, Citeseer, 2005, pp. 259–262.Suche in Google Scholar

[246] S. D. Assimonis, T. V. Yioultsis, and C. S. Antonopoulos, “Computational investigation and design of planar ebg structures for coupling reduction in antenna applications,” IEEE Trans. Magn., vol. 48, no. 2, pp. 771–774, 2012. https://doi.org/10.1109/tmag.2011.2172680.Suche in Google Scholar

[247] Dewan, R., Rahim, S. K. B. A., Ausordin, S. F., and Purnamirza, T., “The improvement of array antenna performance with the implementation of an artificial magnetic conductor (amc) ground plane and in-phase superstrate,” Prog. Electromagn. Res., vol. 140, pp. 147–167, 2013. https://doi.org/10.2528/pier13040206.Suche in Google Scholar

[248] S. X. Ta and I. Park, “Design of miniaturized dual-band artificial magnetic conductor with easy control of second/first resonant frequency ratio,” J. Electromagn. Eng. Sci., vol. 13, no. 2, pp. 104–112, 2013. https://doi.org/10.5515/jkiees.2013.13.2.104.Suche in Google Scholar

[249] J. Chen, et al.., “High-impedance surface-based broadband absorbers with interference theory,” IEEE Trans. Antennas Propag., vol. 63, no. 10, pp. 4367–4374, 2015. https://doi.org/10.1109/tap.2015.2459138.Suche in Google Scholar

[250] Y. Lu and Y. Zhou, “Design of multilayer microwave absorbers using hybrid binary lightning search algorithm and simulated annealing,” Prog. Electromagn. Res., vol. 78, pp. 75–90, 2017. https://doi.org/10.2528/pierb17060302.Suche in Google Scholar

[251] M. M. Khodier and C. G. Christodoulou, “Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization,” IEEE Trans. Antennas Propag., vol. 53, no. 8, pp. 2674–2679, 2005. https://doi.org/10.1109/tap.2005.851762.Suche in Google Scholar

[252] W.-P. Liao and F. L. Chu, “Array pattern synthesis with null steering using genetic algorithms by controlling only the current amplitudes,” Int. J. Electron., vol. 86, no. 4, pp. 445–457, 1999. https://doi.org/10.1080/002072199133355.Suche in Google Scholar

[253] Y. C. Chung and R. Haupt, “Low-sidelobe pattern synthesis of spherical arrays using a genetic algorithm,” Microw. Opt. Technol. Lett., vol. 32, no. 6, pp. 412–414, 2002. https://doi.org/10.1002/mop.10193.Suche in Google Scholar

[254] V. R. Lakshmi and G. Raju, “Optimization of radiation patterns of array antennas,” in PIERS Proceedings, 2011, pp. 12–16.Suche in Google Scholar

[255] D. Marcano, M. Jiminez, and O. Chang, “Synthesis of linear array using schelkunoff’s method and genetic algorithms,” in Antennas and Propagation Society International Symposium, 1996. AP-S. Digest, vol. 2, IEEE, 1996, pp. 814–817.10.1109/APS.1996.549720Suche in Google Scholar

[256] A. Recioui, A. Azrar, H. Bentarzi, M. Dehmas, and M. Chalal, “Synthesis of linear arrays with sidelobe level reduction constraint using genetic algorithms,” Int. J. Microw. Opt. Technol., vol. 3, no. 5, pp. 524–530, 2008.Suche in Google Scholar

[257] K.-K. Yan and Y. Lu, “Sidelobe reduction in array-pattern synthesis using genetic algorithm,” IEEE Trans. Antennas Propag., vol. 45, no. 7, pp. 1117–1122, 1997. https://doi.org/10.1109/8.596902.Suche in Google Scholar

[258] S. Fei, C. Ya-xing, and G. Ben-qing, “A new ga method for array pattern synthesis with null steering,” in The 2006 4th Asia-Pacific Conference on Environmental Electromagnetics, IEEE, 2006, pp. 490–494.10.1109/CEEM.2006.258002Suche in Google Scholar

[259] T. Jeyalilaseetha and R. Sukanesh, “Investigation on the performance of linear antenna array synthesis using genetic algorithm, Cyber Journals: multidisciplinary Journals in Science and Technology,” J. Sel. Areas Telecommun., JSAT, pp. 60–66, 2011.Suche in Google Scholar

[260] A. Chowdhury, R. Giri, A. Ghosh, S. Das, A. Abraham, and V. Snasel, “Linear antenna array synthesis using fitness-adaptive differential evolution algorithm,” in IEEE Congress on Evolutionary Computation, IEEE, 2010, pp. 1–8.10.1109/CEC.2010.5586518Suche in Google Scholar

[261] R. Abdolee, M. T. Ali, and T. A. Rahman, “Decimal genetics algorithms for null steering and sidelobe cancellation in switch beam smart antenna system,” Int. J. Comput. Sci. Secur., vol. 1, no. 3, p. 19, 2007.Suche in Google Scholar

[262] A. Alphones and V. Passoupathi, “Null steering in phased arrays by positional perturbations: a genetic algorithm approach,” in Phased Array Systems and Technology, 1996., IEEE International Symposium on, IEEE, 1996, pp. 203–207.10.1109/PAST.1996.566084Suche in Google Scholar

[263] R. L. Haupt, “Phase-only adaptive nulling with a genetic algorithm,” IEEE Trans. Antennas Propag., vol. 45, no. 6, pp. 1009–1015, 1997. https://doi.org/10.1109/8.585749.Suche in Google Scholar

[264] Y.-j. Lee, J.-W. Seo, J.-K. Ha, and D.-c. Park, “Null steering of linear phased array antenna using genetic algorithm,” in 2009 Asia Pacific Microwave Conference, IEEE, 2009, pp. 2726–2729.10.1109/APMC.2009.5385356Suche in Google Scholar

[265] A. Hammami, R. Ghayoula, and A. Gharsallah, “Antenna array synthesis with Chebyshev-genetic algorithm method,” in Communications, Computing and Control Applications (CCCA), 2011 International Conference on, IEEE, 2011, pp. 1–4.10.1109/CCCA.2011.6031445Suche in Google Scholar

[266] T. Ismail and M. M. Dawoud, “Null steering in phased arrays by controlling the element positions,” IEEE Trans. Antennas Propag., vol. 39, no. 11, pp. 1561–1566, 1991. https://doi.org/10.1109/8.102769.Suche in Google Scholar

[267] D. Abu-Al-Nadi, T. Ismail, and M. Mismar, “Interference suppression by element position control of phased arrays using lm algorithm,” AEU-Int. J. Electron. Commun., vol. 60, no. 2, pp. 151–158, 2006. https://doi.org/10.1016/j.aeue.2005.02.005.Suche in Google Scholar

[268] B. Stuckman and J. Hill, “Method of null steering in phased array antenna systems,” Electron. Lett., vol. 26, no. 15, pp. 1216–1218, 1990. https://doi.org/10.1049/el:19900786.10.1049/el:19900786Suche in Google Scholar

[269] Hsu11, C.-H., Shyr, W.-J., and Kuo, K.-H., “Optimizing multiple interference cancellations of linear phase array based on particle swarm optimization,” J. Inf. Hiding Multim. Signal Process., vol. 1, no. 4, pp. 292–300, 2010.Suche in Google Scholar

[270] C.-H. Hsu, C.-H. Chen, W.-J. Shyr, K.-H. Kuo, Y.-N. Chung, and T.-C. Lin, “Optimizing beam pattern of linear adaptive phase array antenna based on particle swarm optimization,” in Genetic and Evolutionary Computing (ICGEC), 2010 Fourth International Conference on, IEEE, 2010, pp. 586–589.10.1109/ICGEC.2010.150Suche in Google Scholar

[271] Y.-B. Tian and J. Qian, “Improve the performance of a linear array by changing the spaces among array elements in terms of genetic algorithm,” IEEE Trans. Antennas Propag., vol. 53, no. 7, pp. 2226–2230, 2005. https://doi.org/10.1109/tap.2005.850739.Suche in Google Scholar

[272] Karaboga, N., Güney, K., and Akdagl, A., “Null steering of linear antenna arrays with use of modified touring ant colony optimization algorithm,” Int. J. RF Microw. Comput.-Aided Eng., vol. 12, no. 4, pp. 375–383, 2002.10.1002/mmce.10034Suche in Google Scholar

[273] Tennant, A., Dawoud, M., and Anderson, A., “Array pattern nulling by element position perturbations using a genetic algorithm”, Electron. Lett., vol. 30, no. 3, pp. 174–176, 1994.10.1049/el:19940139Suche in Google Scholar

[274] P. Sattari and N. Hejazi, “Array pattern null steering using genetic algorithm by element position perturbations,” in Electrical and Computer Engineering, 2008. CCECE 2008. Canadian Conference on, IEEE, 2008, pp. 000423–000428.10.1109/CCECE.2008.4564569Suche in Google Scholar

[275] A. Akdağlı and K. Güney, “Array pattern nulling using simulated annealing technique by controlling only the element amplitudes,” in Second International Conference on Electrical and Electronics Engineering, ELECO, 2001, pp. 209–213.Suche in Google Scholar

[276] Shore, R., “Nulling at symmetric pattern location with phase-only weight control,” IEEE Trans. Antennas Propag., vol. 32, no. 5, pp. 530–533, 1984. https://doi.org/10.1109/tap.1984.1143360.Suche in Google Scholar

[277] Steyskal, H., “Simple method for pattern nulling by phase perturbation,” IEEE Trans. Antennas Propag., vol. 31, no. 1, pp. 163–166, 1983. https://doi.org/10.1109/tap.1983.1142994.Suche in Google Scholar

[278] B. Kadri, M. Boussahla, and F. T. Bendimerad, “Phase-only planar antenna array synthesis with fuzzy genetic algorithms,” arXiv preprint arXiv:1002.1176, 2010.Suche in Google Scholar

[279] G. K. Mahanti, A. Chakraborty, and S. Das, “Phase-only and amplitude-phase only synthesis of dual-beam pattern linear antenna arrays using floating-point genetic algorithms,” Prog. Electromagn. Res., vol. 68, pp. 247–259, 2007. https://doi.org/10.2528/pier06072301.Suche in Google Scholar

[280] M. Mouhamadou, P. Armand, P. Vaudon, and M. Rammal, “Interference supression of the linear antenna arrays controlled by phase with use of sqp algorithm,” Prog. Electromagn. Res., vol. 59, pp. 251–265, 2006. https://doi.org/10.2528/pier05100603.Suche in Google Scholar

[281] V. Zuniga, A. T. Erdogan, and T. Arslan, “Adaptive radiation pattern optimization for antenna arrays by phase perturbations using particle swarm optimization,” in Adaptive Hardware and Systems (AHS), 2010 NASA/ESA Conference on, IEEE, 2010, pp. 209–214.10.1109/AHS.2010.5546256Suche in Google Scholar

[282] M. Mouhamadou, P. Vaudon, and M. Rammal, “Smart antenna array patterns synthesis: null steering and multi-user beamforming by phase control,” Prog. Electromagn. Res., vol. 60, pp. 95–106, 2006. https://doi.org/10.2528/pier05112801.Suche in Google Scholar

[283] H. Steyskal, R. Shore, and R. Haupt, “Methods for null control and their effects on the radiation pattern,” IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 404–409, 1986. https://doi.org/10.1109/tap.1986.1143816.Suche in Google Scholar

[284] Q. T. Le, N. D. Nguyen, and T. T. Dam, “Amplitude and phase adaptive nulling with a genetic algorithm for array antennas,” in Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), 2011 2nd International Conference on, IEEE, 2011, pp. 1887–1890.10.1109/AIMSEC.2011.6011154Suche in Google Scholar

[285] D. Karaboga, K. Guney, and A. Akdagli, “Antenna array pattern nulling by controlling both amplitude and phase using modified touring ant colony optimization algorithm,” Int. J. Electron., vol. 91, no. 4, pp. 241–251, 2004. https://doi.org/10.1080/00207210410001690638.Suche in Google Scholar

[286] L. Bian, X.-Q. Che, G.-H. Yang, F.-Y. Meng, and Q. Wu, “Low-side-lobe pattern synthesis of antenna array by genetic algorithm,” J. Comput. Appl., vol. 7, p. 008, 2008.10.3724/SP.J.1087.2008.01656Suche in Google Scholar

[287] I. Padmaja, N. B. Subrmanyam, N. D. Rani, and G. T. Rao, “Linear array geometry synthesis using genetic algorithm for optimum side lobe level and null,” Int. J. Adv. Res. Comput. Sci. Electron. Eng. (IJARCSEE), vol. 1, no. 3, p. 81, 2012.Suche in Google Scholar

[288] B. Goswami and D. Mandal, “Introducing deeper nulls and reduction of side lobe levels in a symmetric linear antenna array using genetic algorithm,” in Recent Advances in Information Technology (RAIT), 2012 1st International Conference on, IEEE, 2012, pp. 404–409.10.1109/RAIT.2012.6194454Suche in Google Scholar

[289] W. Jiancheng, Q. Hui, and C. Jianming, “Optimizing adaptive linear array antenna pattern under intensive interference environment using genetic algorithm,” in Intelligent Computation Technology and Automation (ICICTA), 2011 International Conference on, vol. 1, IEEE, 2011, pp. 185–187.10.1109/ICICTA.2011.55Suche in Google Scholar

[290] M. Mangoud, M. Aboul-Dahab, and M. Sabry, “Optimum steering techniques for linear and planar antenna arrays using genetic algorithm,” in Radio Science Conference, 2003. NRSC 2003. Proceedings of the Twentieth National, IEEE, 2003, pp. B7–B1.10.1109/NRSC.2003.157315Suche in Google Scholar

[291] M. R. R. Khan and V. Tuzlukov, “Null steering beamforming for wireless communication system using genetic algorithm,” in Microwave Technology & Computational Electromagnetics (ICMTCE), 2011 IEEE International Conference on, IEEE, 2011, pp. 289–292.10.1109/ICMTCE.2011.5915514Suche in Google Scholar

[292] Recioui, A. and Bentarzi, H., “Null steering of dolph-chebychev arrays using taguchi method,” WSEAS Trans. Commun., vol. 9, no. 11, pp. 720–729, 2010.Suche in Google Scholar

[293] A. Sengupta, T. Chakraborti, A. Konar, and A. K. Nagar, “A multi-objective memetic optimization approach to the circular antenna array design problem,” Prog. Electromagn. Res. B, vol. 42, pp. 363–380, 2012. https://doi.org/10.2528/pierb12042711.Suche in Google Scholar

[294] Zhang, F., Jia, W., and Yao, M., “Linear aperiodic array synthesis using differential evolution algorithm,” IEEE Antennas Wirel. Propag. Lett., vol. 12, no. 1, pp. 797–800, 2013. https://doi.org/10.1109/lawp.2013.2270930.Suche in Google Scholar

[295] P. J. Bevelacqua and C. A. Balanis, “Minimum sidelobe levels for linear arrays,” IEEE Trans. Antennas Propag., vol. 55, no. 12, pp. 3442–3449, 2007. https://doi.org/10.1109/tap.2007.910490.Suche in Google Scholar

[296] A. Garcia-Pino, et al.., “Bifocal reflector antenna for a standoff radar imaging system with enhanced field of view,” IEEE Trans. Antennas Propag., vol. 62, no. 10, pp. 4997–5006, 2014. https://doi.org/10.1109/tap.2014.2346214.Suche in Google Scholar

[297] C.-H. Hsu, W.-J. Shyr, and C.-H. Chen, “Adaptive pattern nulling design of linear array antenna by phase-only perturbations using memetic algorithms,” in First International Conference on Innovative Computing, Information and Control – Volume I (ICICIC’06), vol. 3, 2006, pp. 308–311.10.1109/ICICIC.2006.405Suche in Google Scholar

[298] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antennas Propag., vol. 52, no. 2, pp. 397–407, 2004. https://doi.org/10.1109/tap.2004.823969.Suche in Google Scholar

[299] L. Lizzi, F. Viani, R. Azaro, and A. Massa, “A pso-driven spline-based shaping approach for ultrawideband (uwb) antenna synthesis,” IEEE Trans. Antennas Propag., vol. 56, no. 8, pp. 2613–2621, 2008. https://doi.org/10.1109/TAP.2008.927544.Suche in Google Scholar

[300] K. M. Bakwad, et al.., “Hybrid bacterial foraging with parameter free pso,” in Nature & Biologically Inspired Computing, 2009. NaBIC 2009, World Congress on, IEEE, 2009, pp. 1077–1081.10.1109/NABIC.2009.5393867Suche in Google Scholar

[301] K. Tenglong, Z. Xiaoying, W. Jian, and D. Yihan, “A modified aco algorithm for the optimization of antenna layout,” in Electrical and Control Engineering (ICECE), 2011 International Conference on, 2011, pp. 4269–4272.10.1109/ICECENG.2011.6057613Suche in Google Scholar

[302] B. Basu and G. K. Mahanti, “A comparative study of modified particle swarm optimization, differential evolution and artificial bees colony optimization in synthesis of circular array,” in Power, Control and Embedded Systems (ICPCES), 2010 International Conference on, 2010, pp. 1–5.10.1109/ICPCES.2010.5698614Suche in Google Scholar

[303] R. Ruchi, A. Nandi, and B. Basu, “Design of beam forming network for time-modulated linear array with artificial bees colony algorithm,” Int. J. Numer. Model.: Electron. Netw. Devices Fields, vol. 28, no. 5, pp. 508–521, 2015. https://doi.org/10.1002/jnm.2031.Suche in Google Scholar

[304] T. Datta and I. S. Misra, “A comparative study of optimization techniques in adaptive antenna array processing: the bacteria-foraging algorithm and particle-swarm optimization,” IEEE Antennas Propag. Mag., vol. 51, no. 6, pp. 69–81, 2009. https://doi.org/10.1109/MAP.2009.5433098.Suche in Google Scholar

[305] G. Ram, D. Mandal, R. Kar, and S. P. Ghoshal, “Circular and concentric circular antenna array synthesis using cat swarm optimization,” IETE Tech. Rev., vol. 32, no. 3, pp. 204–217, 2015. https://doi.org/10.1080/02564602.2014.1002543.Suche in Google Scholar

[306] L. Pappula and D. Ghosh, “Linear antenna array synthesis using cat swarm optimization,” AEU-Int. J. Electron. Commun., vol. 68, no. 6, pp. 540–549, 2014. https://doi.org/10.1016/j.aeue.2013.12.012.Suche in Google Scholar

[307] L. Pappula and D. Ghosh, “Synthesis of thinned planar antenna array using multiobjective normal mutated binary cat swarm optimization,” Appl. Comput. Intell. Soft Comput., vol. 2016, 2016, https://doi.org/10.1155/2016/4102156.Suche in Google Scholar

[308] K. A. Rani, et al.., “Modified cuckoo search algorithm in weighted sum optimization for linear antenna array synthesis,” in Wireless Technology and Applications (ISWTA), 2012 IEEE Symposium on, IEEE, 2012, pp. 210–215.10.1109/ISWTA.2012.6373845Suche in Google Scholar

[309] M. Khodier, “Optimisation of antenna arrays using the cuckoo search algorithm,” IET Microw., Antennas Propag., vol. 7, no. 6, pp. 458–464, 2013. https://doi.org/10.1049/iet-map.2012.0692.Suche in Google Scholar

[310] S. K. Mohanty, G. P. Mishra, and B. Mangaraj, “Implementing taguchi and cuckoo search to optimize laa,” in 2014 Annual IEEE India Conference (INDICON), IEEE, 2014, pp. 1–5.10.1109/INDICON.2014.7030622Suche in Google Scholar

[311] A. Chatterjee and G. Mahanti, “Combination of fft and firefly algorithm for synthesis of reconfigurable rectangular array with circular boundary,” in Communications, Devices and Intelligent Systems (CODIS), 2012 International Conference on, IEEE, 2012, pp. 198–201.10.1109/CODIS.2012.6422171Suche in Google Scholar

[312] S. Urvinder and M. Rattan, “Design of linear and circular antenna arrays using cuckoo optimization algorithm,” Prog. Electromagn. Res. C, vol. 46, pp. 1–11, 2014. https://doi.org/10.2528/pierc13110902.Suche in Google Scholar

[313] A. Mukherjee, S. Mandal, G. Mahanti, and R. Ghatak, “Synthesis of simultaneous sum and difference patterns in uniformly excited time-modulated linear arrays using firefly algorithm,” in Students’ Technology Symposium (TechSym), 2014, IEEE, 2014, pp. 143–147.10.1109/TechSym.2014.6807930Suche in Google Scholar

[314] S. E. Mallahzadeh, A. R, A. Alipour, “Design of an e-shaped mimo antenna using iwo algorithm for wireless application at 5.8 ghz,” Prog. Electromagn. Res., vol. 90, pp. 187–203, 2009.10.2528/PIER08122704Suche in Google Scholar

[315] S. Pal, A. Basak, S. Das, and A. Abraham, “Linear antenna array synthesis with invasive weed optimization algorithm,” in SoCPaR, 2009, pp. 161–166.10.1109/SoCPaR.2009.42Suche in Google Scholar

[316] S. Karimkashi and A. A. Kishk, “Antenna array synthesis using invasive weed optimization: a new optimization technique in electromagnetics,” in 2009 IEEE Antennas and Propagation Society International Symposium, 2009.10.1109/APS.2009.5171492Suche in Google Scholar

[317] S. Pal, S. Das, A. Basak, and P. Suganthan, “Synthesis of difference patterns for monopulse antennas with optimal combination of array-size and number of subarrays – a multi-objective optimization approach,” Prog. Electromagn. Res. B, vol. 21, pp. 257–280, 2010. https://doi.org/10.2528/pierb10033107.Suche in Google Scholar

[318] S. Pal, A. Basak, S. Das, A. Abraham, and I. Zelinka, “Concentric circular antenna array synthesis using a differential invasive weed optimization algorithm,” in Soft Computing and Pattern Recognition (SoCPaR), 2010 International Conference of, IEEE, 2010, pp. 395–400.10.1109/SOCPAR.2010.5686527Suche in Google Scholar

[319] G. G. Roy, S. Das, P. Chakraborty, and P. N. Suganthan, “Design of non-uniform circular antenna arrays using a modified invasive weed optimization algorithm,” IEEE Trans. Antennas Propag., vol. 59, no. 1, pp. 110–118, 2011. https://doi.org/10.1109/TAP.2010.2090477.Suche in Google Scholar

[320] S. Sedighy, A. Mallahzadeh, M. Soleimani, and J. Rashed-Mohassel, “Optimization of printed yagi antenna using invasive weed optimization (iwo),” IEEE Antennas Wirel. Propag. Lett., vol. 9, pp. 1275–1278, 2010. https://doi.org/10.1109/lawp.2011.2105458.Suche in Google Scholar

[321] Z. D. Zaharis, C. Skeberis, T. D. Xenos, P. I. Lazaridis, and J. Cosmas, “Design of a novel antenna array beamformer using neural networks trained by modified adaptive dispersion invasive weed optimization based data,” IEEE Trans. Broadcast., vol. 59, no. 3, pp. 455–460, 2013. https://doi.org/10.1109/tbc.2013.2244793.Suche in Google Scholar

[322] Z. D. Zaharis, P. I. Lazaridis, J. Cosmas, C. Skeberis, and T. D. Xenos, “Synthesis of a near-optimal high-gain antenna array with main lobe tilting and null filling using taguchi initialized invasive weed optimization,” IEEE Trans. Broadcast., vol. 60, no. 1, pp. 120–127, 2014. https://doi.org/10.1109/tbc.2013.2283166.Suche in Google Scholar

Received: 2024-10-01
Accepted: 2025-05-19
Published Online: 2025-06-16
Published in Print: 2025-10-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 31.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2024-0307/html
Button zum nach oben scrollen