Startseite Large deviation principle for a space-time fractional stochastic heat equation with fractional noise
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Large deviation principle for a space-time fractional stochastic heat equation with fractional noise

  • Litan Yan EMAIL logo und Xiuwei Yin
Veröffentlicht/Copyright: 9. Juni 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we consider the large deviation principle for a class of space-time fractional stochastic heat equation

tβuε(t,x)=ν(Δ)α2uε(t,x)+It1βf(uε(t,x))+εIt1β[W˙H(t,x)],

where H is a fractional white noise, ν > 0, β ∈ (0, 1), α ∈ (0, 2]. The operator tβ is the Caputo fractional integration operator, and (Δ)α2 is the fractional power of Laplacian. Our proof is based on the weak convergence approach.

Acknowledgements

The Project-sponsored by NSFC (11571071), Innovation Program of Shanghai Municipal Education Commission(12ZZ063) and The Fundamental Research Funds for the Central Universities (17D310403).

References

[1] R.M. Balan, D. Conus, Intermittency for the wave and heat equations with fractional noise in time. Ann. Probab. 44, No 2 (2016), 1488–1534.10.1214/15-AOP1005Suche in Google Scholar

[2] R.M. Balan, C.A. Tudor, The stochastic heat equation with fractional-colored noise: existence of the solution. LatinAmer. J. Probab. Math. Stat. 4 (2008), 57–87; Latin Amer. J. Probab. Math. Stat. 6 (2009), 343–347 (Erratum).Suche in Google Scholar

[3] R.M. Balan, C.A. Tudor, Stochastic heat equation with multiplicative fractional-colored noise. J. Theor. Probab. 23, No 3 (2010), 834–870.10.1007/s10959-009-0237-3Suche in Google Scholar

[4] V. Bally, A. Millet, M. Sanz-Solé, Approximation and support theorem in Hölder norm for parabolic stochastic partial differential equations. Ann. Probab. 23, No 1 (1995), 178–222.10.1214/aop/1176988383Suche in Google Scholar

[5] K. Bogdan, T. Jakubowski, Estimates of heat kernel of fractional Laplacian perturbed by gradient. Commun. Math. Phys. 271, (2007), 179–198.10.1007/s00220-006-0178-ySuche in Google Scholar

[6] A. Budhiraja, P. Dupuis, V. Maroulas, Large deviations for infinite dimensional stochastic dynamical systems, Ann. Probab. 36, No 4 (2008), 1390–1420.10.21236/ADA476159Suche in Google Scholar

[7] M. Caputo, Linear models of dissipation whose Q is almost frequency independent. Part II, Geophys. J. R. Astron. Soc. 13, (1967), 529–539.10.1111/j.1365-246X.1967.tb02303.xSuche in Google Scholar

[8] S. Cerrai, M. Röckner, Large deviations for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term. Ann. Probab. 32, No 1(B) (2004), 1100–1139.10.1016/j.anihpb.2004.03.001Suche in Google Scholar

[9] L. Chen, Nonlinear stochastic time-fractional diffusion equations on ℝ: Moments, Hölder regularity and intermittency. Trans. Amer. Math. Soc. 369, No 12 (2017), 8497–8535.10.1090/tran/6951Suche in Google Scholar

[10] L. Chen, G. Hu, Y. Hu, J. Huang, Space-time fractional diffusions in Gaussian noisy enviroment. Stochastics89, No 1 (2017), 171–206.10.1080/17442508.2016.1146282Suche in Google Scholar

[11] L. Chen, K. Kim, On comparision principle and strict positivity of the solutions to the nonlinear stochastic fractonal heat equation. Ann. Inst. Henri Poincaré Probab. Statist. 89, No 1 (2017), 358–388.Suche in Google Scholar

[12] W. Chen, Y. Liang, X. Hei, Structural derivative based on inverse Mittag-Leffler function for modeling ultraslow diffusion. Fract. Calc. Appl. Anal. 19, No 5 (2016), 1250–1261; 10.1515/fca-2016-0064; https://www.degruyter.com/view/j/fca.2016.19.issue-5/issue-files/fca.2016.19.issue-5.xml.Suche in Google Scholar

[13] Z.Q. Chen, K.H. Kim, P. Kim, Fractional time stochastic partial differential equations. Stochastic Process Appl. 125, No 4 (2015), 1470–1499.10.1016/j.spa.2014.11.005Suche in Google Scholar

[14] R.C. Dalang, Extending the martingale measure stochastic integral with applications to spatially homogeneous SPDE’s. Electron. J. Probab. 4, No 6 (1999), 1–29.10.1214/EJP.v4-43Suche in Google Scholar

[15] R.C. Dalang, D. Khoshnevisan, C. Mueller, D. Nualart, Y. Xiao, A Minicourse on Stochastic Partial Differential Equations. Springer-Verlag, Berlin (2009).10.1007/978-3-540-85994-9Suche in Google Scholar

[16] P. Dupuis, R.S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations. Wiley (1997).10.1002/9781118165904Suche in Google Scholar

[17] T.E. Mellali, M. Mellouk, Large deviations for a fractional stochastic heat equation in spatial dimension ℝd driven by a spatially correlated noise. Stoch. Dyn. 16, No 1 (2016), # 1650001.10.1142/S0219493716500015Suche in Google Scholar

[18] M. Foondun, W. Liu, M. Omaba, Moment bounds for a class of fractional stochastic heat equation. Ann. Probab. 45, No 4 (2016), 2131–2152.10.1214/16-AOP1108Suche in Google Scholar

[19] M. Foodun, J.B. Mijena, E. Nane, Non-linear noise excitation for some space-time fractional stochastic equations in bounded domains. Fract. Calc. Appl. Anal. 19, No 6 (2016), 1527–1553; 10.1515/fca-2016-0079; https://www.degruyter.com/view/j/fca.2016.19.issue-6/issue-files/fca.2016.19.issue-6.xml.Suche in Google Scholar

[20] M. Foondun, E. Nane, Asymptotic properties of some space-time fractional stochastic equations. Math. Z. 287, No 1-2 (2017), 493–519.10.1007/s00209-016-1834-3Suche in Google Scholar

[21] H. Holden, B. Øsendal, J. Ubøe, T. Zhang, Stochastic Partial Differential Equations. Springer, Berlin (2010).10.1007/978-0-387-89488-1Suche in Google Scholar

[22] G. Hu, Y. Hu, Fractional diffusion in Gaussian noisy environment. Mathematics3, No 2 (2015), 131–152.10.3390/math3020131Suche in Google Scholar

[23] Y. Hu, D. Nualart, Stochastic heat equation driven by fractional noise and local time. Probab. Theory Related Fields143, No 1-2 (2009), 285–328.10.1007/s00440-007-0127-5Suche in Google Scholar

[24] Y. Hu, D. Nualart, J. Song, Feynman-Kac formula for heat equation driven by fractional white noise. Ann. Probab. 39, No 1 (2011), 291–326.10.1214/10-AOP547Suche in Google Scholar

[25] D. Khoshnevisan, Analysis of Stochastic Partial Differential Equations. American Mathematical Society (2014).10.1090/cbms/119Suche in Google Scholar

[26] Y. Li, Y. Xie, X. Zhang, Large deviation principle for stochastic heat equation with memory. Discrete Contin. Dyn. Syst. 35, No 11 (2015), 5221–5237.10.3934/dcds.2015.35.5221Suche in Google Scholar

[27] W. Liu, M. Röckner, Stochastic Partial Differential Equations: An Introduction. Springer, New York (2015).10.1007/978-3-319-22354-4Suche in Google Scholar

[28] W. Liu, M. Röcknerb, X.C. Zhu, Large deviation principles for the stochastic quasi-geostrophic equations, Stochastic Process. Appl. 123, No 8 (2013), 3299–3327.10.1016/j.spa.2013.03.020Suche in Google Scholar

[29] D. Márquez-Carreras, M. Sarrá, Large deviation principle for a stochastic heat equation with spatially correlated noise, Electron. J. Probab. 8 (2003), 1–39.10.1214/EJP.v8-146Suche in Google Scholar

[30] A.L. Mehaute, T. Machado, J.C. Trigeassou, J. Sabatier, Fractional Differential and its Applications, FDA’04 (Proc. of the First IFAC Workshop), Vol. 2004-1, International Federation of Autromatic Control, ENSEIRB, Bordeaux, France, July 19-21, 2004.Suche in Google Scholar

[31] J.B. Mijena, E. Nane, Space-time fractional stochastic partial differential equations. Stochastic Process. Appl. 125, No 9 (2015), 3301–3326.10.1016/j.spa.2015.04.008Suche in Google Scholar

[32] J.B. Mijena, E. Nane, Intermittency and time fractional stochastic partial differential equation. Potential Anal. 44, No 2 (2016), 295–312.10.1007/s11118-015-9512-3Suche in Google Scholar

[33] J.B. Mijena, E. Nane, Intermittency fronts for space-time fractional stochastic partial differential equations in (d+1) dimensions. Stochastic Process. Appl. 127, No 4 (2017), 1354–1374.10.1016/j.spa.2016.08.002Suche in Google Scholar

[34] D. Nualart, Malliavin Calculus and Related Topics. Springer-Verlag (2006).Suche in Google Scholar

[35] V. Ortiz-López, M. Sanz-Solé, A Laplace principle for a stochastic wave equation in spatial dimention three. In: Stochastic Analysis, 31–49, Springer-Verlag (2010).Suche in Google Scholar

[36] M. Röcknerb, T.S. Zhang, Stochastic evolution equations of jump type: Existence, uniqueness and large deviation principles. Potential Anal. 26, No 3 (2007), 255–279.10.1007/s11118-006-9035-zSuche in Google Scholar

[37] W.R. Schneider, Completely monotone generalized Mittag-Leffler functions. Exposition. Math. 14, No 1 (1996), 3–16.Suche in Google Scholar

[38] T. Simon, Comparing Fréchet and positive stable laws. Electron. J. Probab. 19, No 6 (2014), 1–25.10.1214/EJP.v19-3058Suche in Google Scholar

[39] J. Walsh, An Introduction to Stochastic Partial Differential Equations. École ďété de Probabilités St Flour XIV, Lect. Notes Math, 1180, Springer-Verlag (1986).Suche in Google Scholar

[40] F. Wang, Harnack Inequalities for Stochastic Partial Differential Equations. Springer, Berlin (2014).10.1007/978-1-4614-7934-5Suche in Google Scholar

[41] T.S. Zhang, On small time asymptotics of diffusions on Hilbert spaces. Ann. Probab. 28, No 2 (2000), 537–557.10.1214/aop/1019160252Suche in Google Scholar

[42] T.S. Zhang, Large deviations for stochastic nonlinear beam equations. J. Funct. Anal. 248, No 1 (2007), 175-201.10.1016/j.jfa.2007.03.029Suche in Google Scholar

Received: 2017-1-9
Published Online: 2018-6-9
Published in Print: 2018-4-25

© 2018 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2018-0026/pdf?lang=de
Button zum nach oben scrollen