Startseite Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions

  • Bashir Ahmad EMAIL logo und Rodica Luca
Veröffentlicht/Copyright: 9. Juni 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We study the existence of solutions for a system of nonlinear Caputo fractional differential equations with coupled boundary conditions involving Riemann-Liouville fractional integrals, by using the Schauder fixed point theorem and the nonlinear alternative of Leray-Schauder type. Two examples are given to support our main results.

References

[1] R. Agarwal, S. Hristova, D. O’Regan, Non-instantaneous impulses in Caputo fractional differential equations. Fract. Calc. Appl. Anal. 20, No 3 (2017), 595–622; 10.1515/fca-2017-0032; https://www.degruyter.com/view/j/fca.2017.20.issue-3/issue-files/fca.2017.20.issue-3.xml.Suche in Google Scholar

[2] B. Ahmad, S.K. Ntouyas, Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions. Appl. Math. Comput. 266 (2015), 615–622.10.1016/j.amc.2015.05.116Suche in Google Scholar

[3] B. Ahmad, S.K. Ntouyas, Existence results for Caputo type sequential fractional differential inclusions with nonlocal integral boundary conditions. J. Appl. Math. Comput. 50 (2016), 157–174.10.1007/s12190-014-0864-4Suche in Google Scholar

[4] B. Ahmad, S. Ntouyas, A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions. Chaos Solitons Fractals83 (2016), 234–241.10.1016/j.chaos.2015.12.014Suche in Google Scholar

[5] A. Alsaedi, S.K. Ntouyas, R.P. Agarwal, B. Ahmad, On Caputo type sequential fractional differential equations with nonlocal integral boundary conditions. Adv. Differ. Equ. 2015, No 33 (2015), 1–12.10.1186/s13662-015-0379-9Suche in Google Scholar

[6] A.A.M. Arafa, S.Z. Rida, M. Khalil, Fractional modeling dynamics of HIV and CD4+ T-cells during primary infection. Nonlinear Biomed. Phys. 6, No 1 (2012), 1–7.10.1186/1753-4631-6-1Suche in Google Scholar PubMed PubMed Central

[7] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific, Boston (2012).10.1142/8180Suche in Google Scholar

[8] K. Cole, Electric conductance of biological systems. In: Proc. Cold Spring Harbor Symp. Quant. Biol., Col Springer Harbor Laboratory Press, New York (1993), 107–116.10.1101/SQB.1933.001.01.014Suche in Google Scholar

[9] S. Das, Functional Fractional Calculus for System Identification and Controls. Springer, New York (2008).Suche in Google Scholar

[10] Y. Ding, H. Ye, A fractional-order differential equation model of HIV infection of CD4+ T-cells. Math. Comp. Model. 50 (2009), 386–392.10.1016/j.mcm.2009.04.019Suche in Google Scholar

[11] V. Djordjevic, J. Jaric, B. Fabry, J. Fredberg, D. Stamenovic, Fractional derivatives embody essential features of cell rheological behavior. Ann. Biomed. Eng. 31 (2003), 692–699.10.1114/1.1574026Suche in Google Scholar PubMed

[12] Z.M. Ge, C.Y. Ou, Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal. Chaos Solitons Fractals35 (2008), 705–717.10.1016/j.chaos.2006.05.101Suche in Google Scholar

[13] M. Gunendi, I. Yaslan, Positive solutions of higher-order nonlinear multi-point fractional equations with integral boundary conditions. Fract. Calc. Appl. Anal. 19, No 4 (2016), 989–1009; 10.1515/fca-2016-0054; https://www.degruyter.com/view/j/fca.2016.19.issue-4/issue-files/fca.2016.19.issue-4.xml.Suche in Google Scholar

[14] J. Henderson, R. Luca, Boundary Value Problems for Systems of Differential, Difference and Fractional Equations. Positive Solutions. Elsevier, Amsterdam (2016).10.1186/s13661-016-0569-8Suche in Google Scholar

[15] J. Henderson, R. Luca, Existence of positive solutions for a singular fractional boundary value problem. Nonlinear Anal. Model. Control22, No 1 (2017), 99–114.10.15388/NA.2017.1.7Suche in Google Scholar

[16] J. Henderson, R. Luca, A. Tudorache, On a system of fractional differential equations with coupled integral boundary conditions. Fract. Calc. Appl. Anal. 18, No 2 (2015), 361–386; 10.1515/fca-2015-0024; https://www.degruyter.com/view/j/fca.2015.18.issue-2/issue-files/fca.2015.18.issue-2.xml.Suche in Google Scholar

[17] J. Jiang, L. Liu, Y. Wu, Positive solutions to singular fractional differential system with coupled boundary conditions. Comm. Nonlinear Sc. Num. Sim. 18, No 11 (2013), 3061–3074.10.1016/j.cnsns.2013.04.009Suche in Google Scholar

[18] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam (2006).Suche in Google Scholar

[19] J. Klafter, S.C. Lim, R. Metzler (Eds.), Fractional Dynamics in Physics. Singapore, World Scientific (2011).10.1142/8087Suche in Google Scholar

[20] R. Luca, A. Tudorache, Positive solutions to a system of semipositone fractional boundary value problems. Adv. Difference Equ. 2014, No 179 (2014), 1–11.10.1186/1687-1847-2014-179Suche in Google Scholar

[21] R. Metzler, J. Klafter, The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1–77.10.1016/S0370-1573(00)00070-3Suche in Google Scholar

[22] M. Ostoja-Starzewski, Towards thermoelasticity of fractal media. J. Therm. Stress. 30 (2007), 889–896.10.1080/01495730701495618Suche in Google Scholar

[23] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).Suche in Google Scholar

[24] Y.Z. Povstenko, Fractional Thermoelasticity. Springer, N. York (2015).10.1007/978-3-319-15335-3Suche in Google Scholar

[25] T. Qi, Y. Liu, Y. Cui, Existence of solutions for a class of coupled fractional differential systems with nonlocal boundary conditions. J. Funct. Spaces2017, Article ID 6703860 (2017), 1–9.10.1155/2017/6703860Suche in Google Scholar

[26] J. Sabatier, O.P. Agrawal, J.A.T. Machado (Eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007).10.1007/978-1-4020-6042-7Suche in Google Scholar

[27] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Yverdon (1993).Suche in Google Scholar

[28] C.S. Sin, L. Zheng, Existence and uniqueness of global solutions of Caputo-type fractional differential equations. Fract. Calc. Appl. Anal. 19 No 3 (2016), 765–774; 10.1515/fca-2016-0040; https://www.degruyter.com/view/j/fca.2016.19.issue-3/issue-files/fca.2016.19.issue-3.xml.Suche in Google Scholar

[29] I.M. Sokolov, J. Klafter, A. Blumen, A fractional kinetics. Phys. Today55 (2002), 48–54.10.1063/1.1535007Suche in Google Scholar

[30] J.A. Tenreiro Machado, V. Kiryakova, The chronicles of fractional calculus. Fract. Calc. Appl. Anal. 20, No 2 (2017), 307–336, 10.1515/fca-2017-0017; https://www.degruyter.com/view/j/fca.2017.20.issue-2/issue-files/fca.2017.20.issue-2.xml.Suche in Google Scholar

[31] Y. Wang, L. Liu, Y. Wu, Positive solutions for a class of higher-order singular semipositone fractional differential systems with coupled integral boundary conditions and parameters. Adv. Differ. Equ. 2014, No 268 (2014), 1–24.10.1186/1687-1847-2014-268Suche in Google Scholar

[32] S. Xie, Y. Xie, Positive solutions of higher-order nonlinear fractional differential systems with nonlocal boundary conditions. J. Appl. Anal. Comput. 6, No 4 (2016), 1211–1227.10.14232/ejqtde.2015.1.18Suche in Google Scholar

[33] L. Zhang, B. Ahmad, G. Wang, Existence and approximation of positive solutions for nonlinear fractional integro-differential boundary value problems on an unbounded domain. Appl. Comput. Math. 15 (2016), 149–158.Suche in Google Scholar

Received: 2017-9-7
Published Online: 2018-6-9
Published in Print: 2018-4-25

© 2018 Diogenes Co., Sofia

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2018-0024/html
Button zum nach oben scrollen