Startseite Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients

  • Adam Kubica EMAIL logo und Masahiro Yamamoto
Veröffentlicht/Copyright: 9. Juni 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We discuss an initial-boundary value problem for a fractional diffusion equation with Caputo time-fractional derivative where the coefficients are dependent on spatial and time variables and the zero Dirichlet boundary condition is attached. We prove the unique existence of weak and regular solutions.

Acknowledgment

The research leading to these results has been supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement No 319012 and the Funds for International Co-operation under Polish Ministry of Science and Higher Education grant agreement No 2853/7.PR/2013/2. Both authors are partially supported by Grants-in-Aid for Scientific Research (S) 15H05740 and (S) 26220702, Japan Society for the Promotion of Science. The first author was partly supported by National Science Centre, Poland through 2017/26/M/ST1/00700 Grant.

References

[1] M. Allen, L. Caffarelli, A. Vasseur, A parabolic problem with a fractional time derivative. Arch. Ration. Mech. Anal. 221, No 2 (2016), 603–630.10.1007/s00205-016-0969-zSuche in Google Scholar

[2] P. Clément, S.O. Londen, G. Simonett, Quasilinear evolutionary equations and continuous interpolation spaces. J. Differential Equations196, No 2 (2004), 418–447.10.1016/j.jde.2003.07.014Suche in Google Scholar

[3] R. Gorenflo, M. Yamamoto, Operator-theoretic treatment of linear Abel integral equations of first kind. Japan J. Indust. Appl. Math. 16, No 1 (1999), 137–161.10.1007/BF03167528Suche in Google Scholar

[4] R. Gorenflo, Y. Luchko, M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces. Fract. Calc. Appl. Anal. 18, No 3 (2015), 799–820; 10.1515/fca-2015-0048; https://www.degruyter.com/view/j/fca.2015.18.issue-3/issue-files/fca.2015.18.issue-3.xml.Suche in Google Scholar

[5] A. Kubica, P. Rybka, K. Ryszewska, Weak solutions of fractional differential equations in non cylindrical domain. Nonlinear Anal. Real World Appl. 36 (2017), 154–182.10.1016/j.nonrwa.2017.01.005Suche in Google Scholar

[6] O.A. Ladyzhenskaya, On integral estimates, convergence, approximate methods, and solution in functionals for elliptic operators (In Russian). Vestnik Leningrad. Univ. 13, No 7 (1958), 60–69.Suche in Google Scholar

[7] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach Science Publishers, New York, 1969.Suche in Google Scholar

[8] J.L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I. Springer-Verlag, New York-Heidelberg, 1972.10.1007/978-3-642-65161-8Suche in Google Scholar

[9] J. Prüss, Evolutionary Integral Equations and Applications. Birkhaüser - Springer Basel AG, Basel, 1993.10.1007/978-3-0348-8570-6Suche in Google Scholar

[10] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Science Publishers, Yverdon, 1993.Suche in Google Scholar

[11] H. Tanabe, Equations of Evolution, Monographs and Studies in Mathematics, # 6, Pitman, Boston, Mass.-London, 1979.Suche in Google Scholar

[12] H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, No 2 (2007), 1075–1081.10.1016/j.jmaa.2006.05.061Suche in Google Scholar

[13] Z. Li, Y. Liu, M. Yamamoto, Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients. Appl. Math. Comput. 257 (2015), 381–397.10.1016/j.amc.2014.11.073Suche in Google Scholar

[14] Y. Liu, W. Rundell, M. Yamamoto, Strong maximum principle for fractional diffusion equations and an application to an inverse source problem. Fract. Calc. Appl. Anal. 19, No 4 (2016), 888–906; 10.1515/fca-2016-0048; https://www.degruyter.com/view/j/fca.2016.19.issue-4/issue-files/fca.2016.19.issue-4.xml.Suche in Google Scholar

[15] R. Zacher, Quasilinear Parabolic Problems with Nonlinear Boundary Conditions. Ph.D Thesis, Martin-Luther-Univ., Halle-Wittenberg, 2003; Available at: https://www.yumpu.com/en/document/view/4926858.Suche in Google Scholar

[16] R. Zacher, Maximal regularity of type Lp for abstract parabolic Volterra equations. J. Evol. Equ. 5, No 1 (2005), 79–103.10.1007/s00028-004-0161-zSuche in Google Scholar

[17] R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces. Funkcial. Ekvac. 52, No 1 (2009), 1–18.10.1619/fesi.52.1Suche in Google Scholar

Received: 2017-3-17
Published Online: 2018-6-9
Published in Print: 2018-4-25

© 2018 Diogenes Co., Sofia

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2018-0018/html
Button zum nach oben scrollen