Home Fractional generalizations of Zakai equation and some solution methods
Article
Licensed
Unlicensed Requires Authentication

Fractional generalizations of Zakai equation and some solution methods

  • Sabir Umarov EMAIL logo , Fred Daum and Kenric Nelson
Published/Copyright: June 9, 2018

Abstract

The paper discusses fractional generalizations of Zakai equations arising in filtering problems. The derivation of the fractional Zakai equation, existence and uniqueness of its solution, as well as some methods of solution to the fractional filtering problem, including fractional version of the particle flow method, are presented.

References

[1] A. Bensoussan, R. Glowinski, A. Rascanu, Approximations of Zakai equation by the splitting up method. SIAM J. Control Optim. 28, No 6 (1989), 1420–1431.10.1007/BFb0002686Search in Google Scholar

[2] A. Budhiraja, G. Kallianpur, Approximation to the solutions of Zakai equations using multiple Wiener and Stratonovich expansions. Stochastics56 (1996), 271–315.10.1080/17442509608834046Search in Google Scholar

[3] F. Daum, Solution of the Zakai equation by separation of variables. IEEE Trans. on Automatic ControlAC-32, No 10 (1987), 941–943.10.1109/TAC.1987.1104460Search in Google Scholar

[4] F. Daum, J. Huang, Particle flow with non-zero diffusion for nonlinear filters, Bayesian decision, and transport. In: Proc. of SPIE Conf. on Signal Processing (Ed. Ivan Kadar), Baltimore, April (2013).Search in Google Scholar

[5] F. Daum, J. Huang, A. Noushin, New theory and numerical experiments for Gromov’s method with stochastic particle flow. In: Proc. of IEEE FUSION Conference, Cambridge, UK, July (2018).Search in Google Scholar

[6] A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [Engl. Transl.: On the motion of small particles suspended in a stationary liquid, as required by the molecular kinetic theory of heat]. Annalen der Physic17, No 8 (1905), 549–560.10.1002/andp.19053220806Search in Google Scholar

[7] M. Fujisaki, G. Kallianpur, H. Kunita, Stochastic differential equations for the nonlinear filtering problem. Osaka J. of Mathematics9, No 1 (1972), 19–40.Search in Google Scholar

[8] B. Grigelionis, Stochastic non-linear filtering equations and semimartingales. In: Lecture Notes Math. 972 (Eds. S.K. Mitter, A. Moro), Springer-Verlag, Berlin (1982), 63–99.10.1007/BFb0064860Search in Google Scholar

[9] R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order. In: A. Carpinteri and F. Mainardi (Eds.): Fractals and Fractional Calculus in Continuum Mechanics, Springer (1997), 223–276.10.1007/978-3-7091-2664-6_5Search in Google Scholar

[10] I. Gyöngy, N.V. Krylov, SPDE’s with unbounded coefficients and applications, I, II. Stochastics and Stochastic Reports32 (1990), 53–91, 165–180.10.1080/17442509008833653Search in Google Scholar

[11] M. Hahn, S. Umarov, Fractional Fokker-Plank-Kolmogorov type equations and their associated stochastic differential equations. Fract. Calc. Appl. Anal. 14, No 1 (2011), 56–79; 10.2478/s13540-011-0005-9; https://www.degruyter.com/view/j/fca.2011.14.issue-1/issue-files/fca.2011.14.issue-1.xml.Search in Google Scholar

[12] M. Hahn, K. Kobayashi, S. Umarov, Fokker-Planck-Kolmogorov equations associated with time-changed fractional Brownian motion. Proc. Amer. Math, Soc. 139, No 2 (2010), 691–705; 0002-9939(2010)10527-0.Search in Google Scholar

[13] K. Itô, K. Xiong, Gaussian filters for nonlinear filtering problems. IEEE Trans. on Automatic Control45, No 5 (2000), 910–927.10.1109/9.855552Search in Google Scholar

[14] J. Jacod, Calcul Stochastique et Probl`emes de Martingales. In: Lecture Notes in Mathematics714, Springer, Berlin (1979), 539 pp.10.1007/BFb0064907Search in Google Scholar

[15] R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction theory. J. of Basic Engineering83 (1961), 95–108.10.1115/1.3658902Search in Google Scholar

[16] H. Kunita, Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, Cambridge (1990).Search in Google Scholar

[17] H.J. Kushner, Dynamical equations for optimal nonlinear filtering. J. of Differential Equations3 (1967), 179–190.10.1016/0022-0396(67)90023-XSearch in Google Scholar

[18] R.Sh. Lipster, A.N. Shiryaev, Statistics of Random Processes, I, II. Springer, New York (2002).10.1007/978-3-662-13043-8Search in Google Scholar

[19] S. Lototsky, R. Mikulevicius, R. Rozovskii, Nonlinear filtering revisited: A spectral approach. SIAM J. Control Optimization35 (1997), 435–461.10.1137/S0363012993248918Search in Google Scholar

[20] T. Meyer-Brandis, F. Proske, Explicit solution of a non-linear filtering problem for Lévy processes with applications to finance. Appl. Math. Optim. 50 (2004), 119–134.10.1007/s00245-004-0798-6Search in Google Scholar

[21] E. Pardoux, Stochastic differential equations and filtering of diffusion processes. Stochastics3 (1979), 127–167.10.1080/17442507908833142Search in Google Scholar

[22] B.L. Rozovskii, Stochastic Evolution Systems. Linear Theory and Applications to Nonlinear Filtering. Kluwer Academic Publishers, Dotrecht (1990).10.1007/978-94-011-3830-7_3Search in Google Scholar

[23] S. Umarov, F. Daum, K. Nelson, Fractional generalizations of filtering problems and their associated fractional Zakai equations. Fract. Calc. Appl. Anal. 17, No 3 (2014), 745–764; 10.2478/s13540-014-0197-x; https://www.degruyter.com/view/j/fca.2014.17.issue-3/issue-files/fca.2014.17.issue-3.xml.Search in Google Scholar

[24] S. Umarov, Introduction to Fractional and Pseudo-Differential Equations with Singular Symbols. Ser. Developments in Mathematics, 41, Springer (2015).10.1007/978-3-319-20771-1Search in Google Scholar

[25] S. Umarov, M. Hahn, K. Kobayashi, Beyond the Triangle: Brownian Motion, Itô Calculus, and Fokker-Planck Equation – Fractional Generalizations. World Scientific (2018).10.1142/10734Search in Google Scholar

[26] M. Zakai, On the optimal filtering of diffusion processes. Z. Wahrsch. Verw. Gebiete11, No 3 (1969), 230–243.10.1007/BF00536382Search in Google Scholar

Received: 2017-12-22
Published Online: 2018-6-9
Published in Print: 2018-4-25

© 2018 Diogenes Co., Sofia

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/fca-2018-0020/html
Scroll to top button