Abstract
In this paper we consider the following fractional system
where 0 < α, β < 2, 𝓕α and 𝓖β are the fully nonlinear fractional operators:
A decay at infinity principle and a narrow region principle for solutions to the system are established. Based on these principles, we prove the radial symmetry and monotonicity of positive solutions to the system in the whole space and a unit ball respectively, and the nonexistence in a half space by generalizing the direct method of moving planes to the nonlinear system.
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 11771354).
References
[1] H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method. Bol. Soc. Brasil. Mat. 22, No 1 (1991), 1–37; http://dx.doi.org/10.1007/BF01244896.10.1007/BF01244896Suche in Google Scholar
[2] J.P. Bouchard, A. Georges, Anomalous diffusion in disordered media, Statistical mechanics, models and physical applications. Phys. Rep. 195 (1990), 127–293; http://dx.doi.org/10.1016/0370-1573(90)90099-N.10.1016/0370-1573(90)90099-NSuche in Google Scholar
[3] C. Brandle, E. Colorado, A. de Pablo, U. Sanchez, A concave convex elliptic problem involving the fractional Laplacian. Proc. Royal Soc. Edinburgh143 (2013), 39–71; http://dx.doi.org/10.1017/S0308210511000175.10.1017/S0308210511000175Suche in Google Scholar
[4] J. Busca, B. Sirakov, Symmetry results for semilinear elliptic systems in the whole space. J. Differential Equations163 (2000), 41–56; http://dx.doi.org/10.1006/jdeq.1999.3701.10.1006/jdeq.1999.3701Suche in Google Scholar
[5] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations32 (2007), 1245–1260; http://dx.doi.org/10.1080/03605300600987306.10.1080/03605300600987306Suche in Google Scholar
[6] L. Caffarelli, L. Silvestre, Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math. 62, No 5 (2009), 597–638; http://dx.doi.org/10.1002/cpa.20274.10.1002/cpa.20274Suche in Google Scholar
[7] L. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasigeostrophic equation. Ann. Math. 171 (2010), 1903–1930; http://dx.doi.org/10.4007/annals.2010.171.1903.10.4007/annals.2010.171.1903Suche in Google Scholar
[8] W.X. Chen, Y.Q. Fang, R. Yang, Liouville theorems involving the fractional Laplacian on a half space. Advances in Math. 274 (2015), 167–198; http://dx.doi.org/10.1016/j.aim.2014.12.013.10.1016/j.aim.2014.12.013Suche in Google Scholar
[9] W.X. Chen, C.M. Li, A priori estimates for prescribing scalar curvature equations. Ann. of Math. 145, No 3 (1997), 547–564; http://dx.doi.org/10.2307/2951844.10.2307/2951844Suche in Google Scholar
[10] W.X. Chen, C.M. Li, Methods on Nonlinear Elliptic Equations. In: AIMS Book Series on Diff. Equa. Dyn. Sys., 2010.Suche in Google Scholar
[11] W.X. Chen, C.M. Li, Radial symmetry of solutions for some integral systems of Wolff type. Disc. Cont. Dyn. Sys. 30 (2011), 1083–1093; http://dx.doi.org/10.3934/dcds.2011.30.1083.10.3934/dcds.2011.30.1083Suche in Google Scholar
[12] W.X. Chen, C.M. Li, Y. Li, A direct method of moving planes for the fractional Laplacian. Adv. Math. 308 (2017), 404–437; http://dx.doi.org/10.1016/j.aim.2016.11.03.10.1016/j.aim.2016.11.038Suche in Google Scholar
[13] W.X. Chen, C.M. Li, B. Ou, Classification of solutions for a system of integral equations. Comm. Partial Differential Equations30, No 1-3 (2005), 59–65; http://dx.doi.org/10.1081/PDE-200044445.10.1081/PDE-200044445Suche in Google Scholar
[14] W.X. Chen, J.Y. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems. J. Math. Anal. Appl. 2 (2011), 744–753; http://dx.doi.org/10.1016/j.jmaa.2010.11.035.10.1016/j.jmaa.2010.11.035Suche in Google Scholar
[15] P. Constantin, Euler Equations, Navier-Stokes Equations and Turbulence, Mathematical Foundation of Turbulent Viscous Flows. In: Lecture Notes in Math., Vol. 1871, Springer-verlag, New York, 2006, 1–43.Suche in Google Scholar
[16] G. Di Blasio, B. Volzone, Comparison and regularity results for the fractional Laplacian via symmetrization methods. J. Differential Equations253, No 9 (2012), 2593–2615; http://dx.doi.org/10.1016/j.jde.2012.07.004.10.1016/j.jde.2012.07.004Suche in Google Scholar
[17] J. Fröhlich, B.L.G. Jonsson, E. Lenzmann, Effective dynamics for boson stars. Nonlinearity20, No 5 (2007), 1031–1075; http://dx.doi.org/10.1088/0951-7715/20/5/001.10.1088/0951-7715/20/5/001Suche in Google Scholar
[18] B. Gidas, W. M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68, No 3 (1979), 209–243; http://projecteuclid.org/euclid.cmp/1103905359.10.1007/BF01221125Suche in Google Scholar
[19] C. Jin, C.M. Li, Symmetry of solutions to some systems of integral equations. Proc. Amer. Math. Soc. 134, No 6 (2006), 1661–1670; http://dx.doi.org/10.1090/S0002-9939-05-08411-X.10.1090/S0002-9939-05-08411-XSuche in Google Scholar
[20] C.M. Li, Monotonicity and symmetry of solutions of fully non-linear elliptic equations on unbounded domains. Comm. Partial Differential Equations16, No 4-5 (1991), 585–615; http://dx.doi.org/10.1080/03605309108820770.10.1080/03605309108820770Suche in Google Scholar
[21] C.M. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains. Comm. Partial Differential Equations16, No 2-3 (1991), 491–526; http://dx.doi.org/10.1080/03605309108820766.10.1080/03605309108820766Suche in Google Scholar
[22] L. Li, J.J. Sun, S. Tersian, Infinitely many sign-changing solutions for the Brézis-Nirenberg problem involving the fractional Laplacian. Fract. Calc. Appl. Anal. 20, No 5 (2017), 1146–11164; https://doi.org/10.1515/fca-2017-0061; https://www.degruyter.com/view/j/fca.2017.20.issue-5/issue-files/fca.2017.20.issue-5.xml.10.1515/fca-2017-0061Suche in Google Scholar
[23] Y. Li, W.M. Ni, Radial symmetry of positive solutions of nonlinear elliptic equations in Rn. Comm. Partial Differential Equations18, No 5-6 (1993), 1043–1054; http://dx.doi.org/10.1080/03605309308820960.10.1080/03605309308820960Suche in Google Scholar
[24] Y.Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc. 6, No 2 (2004), 153–180; http://dx.doi.org/10.4171/JEMS/6.10.4171/JEMS/6Suche in Google Scholar
[25] B.Y. Liu, L. Ma, Radial symmetry results for fractional Laplacian systems. Nonlinear Anal. 146 (2016), 120–135; http://dx.doi.org/10.1016/j.na.2016.08.022.10.1016/j.na.2016.08.022Suche in Google Scholar
[26] L. Ma, B.Y. Liu, Symmetry results for decay solutions of elliptic systems in the whole space. Adv. Math. 225, No 6 (2010), 3052–3063; http://dx.doi.org/10.1016/j.aim.2010.05.022.10.1016/j.aim.2010.05.022Suche in Google Scholar
[27] A.F. Nowakowski, F.C.G.A. Nicolleau, M. Rahman, The fractional Laplacian as a limiting case of a self-similar spring model and applications to n-dimensional anomalous diffusion. Adv. Math. 16, No 4 (2013), 827–859; 10.2478/s13540-013-0052-5.Suche in Google Scholar
[28] V.E. Tarasov, G.M. Zaslavsky, Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul. 11, No 8 (2006), 885–898; http://dx.doi.org/10.1016/j.cnsns.2006.03.005.10.1016/j.cnsns.2006.03.005Suche in Google Scholar
[29] J.L. Vázquez, Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. J. Eur. Math. Soc. 16, No 4 (2014), 769–803; http://dx.doi.org/10.4171/JEMS/446.10.4171/JEMS/446Suche in Google Scholar
[30] J.L. Vázquez, B. Volzone, Symmetrization for linear and nonlinear fractional parabolic equations of porous medium type. J. Math. Pures Appl. 101 (2014), 553–582; http://dx.doi.org/10.4171/JEMS/446.10.1016/j.matpur.2013.07.001Suche in Google Scholar
[31] J.L. Vázquez, B. Volzone, Optimal estimates for fractional fast diffusion equations. J. Math. Pures Appl. 9, No 103 (2015), 535–556; http://dx.doi.org/10.1016/j.matpur.2014.07.002.10.1016/j.matpur.2014.07.002Suche in Google Scholar
[32] P.Y. Wang, M. Yu, Solutions of fully nonlinear nonlocal systems. J. Math. Anal. Appl. 450, No 2 (2017), 982–995; http://doi.org/10.1016/j.jmaa.2017.01.070.10.1016/j.jmaa.2017.01.070Suche in Google Scholar
[33] Q.M. Zhou, K.Q. Wang, Existence and multiplicity of solutions for non-linear elliptic problems with the fractional Laplacian. Fract. Calc. Appl. Anal. 18, No 1 (2015), 133–145; https://doi.org/10.1515/fca-2015-0009; https://www.degruyter.com/view/j/fca.2015.18.issue-1/issue-files/fca.2015.18.issue-1.xml.10.1515/fca-2015-0009Suche in Google Scholar
© 2018 Diogenes Co., Sofia
Artikel in diesem Heft
- Frontmatter
- Editorial
- FCAA related news, events and books (FCAA–volume 21–2–2018)
- Research Paper
- Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients
- Research Paper
- Analytical solutions for multi-term time-space fractional partial differential equations with nonlocal damping terms
- Research Paper
- Fractional generalizations of Zakai equation and some solution methods
- Research Paper
- Stability analysis of impulsive fractional difference equations
- Research Paper
- Mellin convolutions, statistical distributions and fractional calculus
- Research Paper
- Fractional wavelet frames in L2(ℝ)
- Research Paper
- Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions
- Research Paper
- Two point fractional boundary value problems with a fractional boundary condition
- Research Paper
- Large deviation principle for a space-time fractional stochastic heat equation with fractional noise
- Research Paper
- Extension of Mikhlin multiplier theorem to fractional derivatives and stable processes
- Research Paper
- Noether symmetry and conserved quantity for fractional Birkhoffian mechanics and its applications
- Research Paper
- Asymptotic behavior of mild solutions for nonlinear fractional difference equations
- Research Paper
- Positive solutions to nonlinear systems involving fully nonlinear fractional operators
Artikel in diesem Heft
- Frontmatter
- Editorial
- FCAA related news, events and books (FCAA–volume 21–2–2018)
- Research Paper
- Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients
- Research Paper
- Analytical solutions for multi-term time-space fractional partial differential equations with nonlocal damping terms
- Research Paper
- Fractional generalizations of Zakai equation and some solution methods
- Research Paper
- Stability analysis of impulsive fractional difference equations
- Research Paper
- Mellin convolutions, statistical distributions and fractional calculus
- Research Paper
- Fractional wavelet frames in L2(ℝ)
- Research Paper
- Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions
- Research Paper
- Two point fractional boundary value problems with a fractional boundary condition
- Research Paper
- Large deviation principle for a space-time fractional stochastic heat equation with fractional noise
- Research Paper
- Extension of Mikhlin multiplier theorem to fractional derivatives and stable processes
- Research Paper
- Noether symmetry and conserved quantity for fractional Birkhoffian mechanics and its applications
- Research Paper
- Asymptotic behavior of mild solutions for nonlinear fractional difference equations
- Research Paper
- Positive solutions to nonlinear systems involving fully nonlinear fractional operators