Home Purinergic signaling and the functioning of the nervous system cells
Article
Licensed
Unlicensed Requires Authentication

Purinergic signaling and the functioning of the nervous system cells

  • Kamila Puchałowicz , Irena Baranowska-Bosiacka EMAIL logo , Violetta Dziedziejko and Dariusz Chlubek
Published/Copyright: March 5, 2016
Become an author with De Gruyter Brill

Abstract

Purinergic signaling in the nervous system has been the focus of a considerable number of studies since the 1970s. The P2X and P2Y receptors are involved in the initiation of purinergic signaling. They are very abundant in the central and peripheral nervous systems, where they are expressed on the surface of neurons and glial cells - microglia, astrocytes, oligodendrocytes and Schwann cells and the precursors of the latter two. Their ligands - extracellular nucleotides - are released in the physiological state by astrocytes and neurons forming synaptic connections, and are essential for the proper functioning of nervous system cells. Purinergic signaling plays a crucial role in neuromodulation, neurotransmission, myelination in the CNS and PNS, intercellular communication, the regulation of ramified microglia activity, the induction of the response to damaging agents, the modulation of synaptic activity and other glial cells by astrocytes, and the induction of astrogliosis. Understanding these mechanisms and the fact that P2 receptors and their ligands are involved in the pathogenesis of diseases of the nervous system may help in the design of drugs with different and more effective mechanisms of action.

References

1. Abbracchio, M.P., Burnstock, G., Verkhratsky, A. and Zimmermann, H. Purinergic signaling in the nervous system: an overview. Trends Neurosci. 32 (2009) 19-29.10.1016/j.tins.2008.10.001Search in Google Scholar PubMed

2. Helenius, M., Jalkanen, S. and Yegutkin, G. Enzyme-coupled assays for simultaneous detection of nanomolar ATP, ADP, AMP, adenosine, inosine and pyrophosphate concentrations in extracellular fluids. Biochim. Biophys. Acta 1823 (2012) 1967-1975.Search in Google Scholar

3. Bianchi, M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81 (2007) 1-5.Search in Google Scholar

4. Rodrigues, R.J., Tomé, A.R. and Cunha, R.A. ATP as a multi-target danger signal in the brain. Front. Neurosci. 9 (2015) 148. DOI: 10.3389/fnins.2015.00148.10.3389/fnins.2015.00148Search in Google Scholar PubMed PubMed Central

5. Burnstock, G. and Kennedy, C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen. Pharmacol. 6 (1985) 433-440.Search in Google Scholar

6. Khakh, B.S. and North, R.A. Neuromodulation by extracellular ATP and P2X receptors in the CNS. Neuron 76 (2012) 51-69.Search in Google Scholar

7. Jacobson, K.A., Jayasekara, M.P. and Costanzi, S. Molecular structure of P2Y receptors: mutagenesis, modeling and chemical probes. Wiley Interdiscip. Rev. Membr. Transp. Signal. 1 (2012) WMTS68. DOI: 10.1002/wmts.68.10.1002/wmts.68Search in Google Scholar PubMed PubMed Central

8. Burnstock, G. Purinergic signaling: past, present and future. Braz. J. Med. Biol. Res. 42 (2009) 3-8.10.1590/S0100-879X2008005000037Search in Google Scholar

9. Burnstock, G., Campbell, G., Satchell, D. and Smythe, A. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br. J. Pharmacol. 40 (1970) 668-688.Search in Google Scholar

10. Burnstock, G. Neural nomenclature. Nature 229 (1971) 282-283.Search in Google Scholar

11. Burnstock, G. Purinergic nerves. Pharmacol. Rev. 24 (1972) 509-581.Search in Google Scholar

12. Evans, R.J., Derkach, V. and Surprenant, A. ATP mediates fast synaptic transmission in mammalian neurons. Nature 357 (1992) 503-505.Search in Google Scholar

13. Edwards, F.A., Gibb, A.J. and Colquhoun, D. ATP receptor-mediated synaptic currents in the central nervous system. Nature 359 (1992) 144-147.Search in Google Scholar

14. Burnstock, G. A basis for distinguishing two types of purinergic receptor. In: Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach. (Straub, R.W. and Bolis, L., Eds.), Raven Press, New York, 1978, 107-118.Search in Google Scholar

15. Purinergic signaling and the nervous system (Burnstock, G. and Verkhratsky, A., Ed.), Springer, Berlin/Heidelberg, 2012, 1-715.Search in Google Scholar

16. Abbracchio, M.P., Burnstock, G., Boeynaems, J.-M., Barnard, E.A., Boyer, J.L., Kennedy, C., Knight, G.E., Fumagalli, M., Gachet, C., Jacobson, K.A. and Weisman, G.A. International Union of Pharmacology. Update and subclassification of the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol. Rev. 58 (2006) 281-341.Search in Google Scholar

17. Kettenmann, H., Hanisch, U.K., Noda, M. and Verkhratsky, A. Physiology of microglia. Physiol. Rev. 91 (2011) 461-553.Search in Google Scholar

18. Zimmermann, H. Ectonucleotidases in the nervous system. Novartis Found. Symp. 276 (2006) 113-128.Search in Google Scholar

19. Burnstock, G. Purinergic receptors and pain. Curr. Pharm. Des. 15 (2009) 1717-1735.Search in Google Scholar

20. Pankratov, Y., Lalo, U., Verkhratsky, A. and North, R.A. Vesicular release of ATP at central synapses. Pflugers Arch. 452 (2006) 589-597.Search in Google Scholar

21. Hiasa, M., Togawa, N. and Moriyama, Y. Vesicular nucleotide transport: a brief history and the vesicular nucleotide transporter as a target for drug development. Curr. Pharm. Des. 20 (2014) 2745-2749.Search in Google Scholar

22. Sawada, K., Echigo, N., Juge, N., Miyaji, T., Otsuka, M., Omote, H., Yamamoto, A. and Moriyama, Y. Identification of a vesicular nucleotide transporter. Proc. Natl. Acad. Sci. U.S.A. 105 (2008) 5683-5686.10.1073/pnas.0800141105Search in Google Scholar PubMed PubMed Central

23. Oya, M., Kitaguchi, T., Yanagihara, Y., Numano, R., Kakeyama, M., Ikematsu, K. and Tsuboi, T. Vesicular nucleotide transporter is involved in ATP storage of secretory lysosomes in astrocytes. Biochem. Biophys. Res. Commun. 438 (2013) 145-151.Search in Google Scholar

24. Imura, Y., Morizawa, Y., Komatsu, R., Shibata, K., Shinozaki, Y., Kasai, H., Moriishi, K., Moriyama, Y. and Koizumi, S. Microglia release ATP by exocytosis. Glia 61 (2013) 1320-1330.Search in Google Scholar

25. Fitz, J.G. Regulation of cellular ATP release. Trans. Am. Clin. Climatol. Assoc. 118 (2007) 199-208.Search in Google Scholar

26. Thyssen, A., Hirnet, D., Wolburg, H., Schmalzing, G., Deitmer, J.W. and Lohr, C. Ectopic vesicular neurotransmitter release along sensory axons mediates neurovascular coupling via glial calcium signaling. Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 15258-15263.Search in Google Scholar

27. Zhang, X., Chen, Y., Wang, C. and Huang, L.Y. Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 9864-9869.Search in Google Scholar

28. Burnstock, G. Unresolved issues and controversies in purinergic signaling. J. Physiol. 586 (2008) 3307-3312.Search in Google Scholar

29. Scemes, E., Suadicani, S.O., Dahl, G. and Spray, D.C. Connexin and pannexin mediated cell-cell communication. Neuron Glia Biol. 3 (2007) 199-208 Search in Google Scholar

30. Huckstepp, R.T., id Bihi, R., Eason, R., Spyer, K.M., Dicke, N., Willecke, K., Marina, N., Gourine, A.V. and Dale, N. Connexin hemichannel-mediated CO2-dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity. J. Physiol. 588 (2010) 3901-3920.Search in Google Scholar

31. Giaume, C., Leybaert, L., Naus, C.C. and Sáez, J.C. Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front. Pharmacol. 4 (2013) 88.Search in Google Scholar

32. Iglesias, R.M., Dahl, G., Qiu, F., Spray, D.C. and Scemes, E. Pannexin 1: the molecular substrate of astrocyte "hemichannels". J. Neurosci. 29 (2009) 7092-7097.Search in Google Scholar

33. Iglesias, R.M. and Spray, D.C. Pannexin1-mediated ATP release provides signal transmission between neuro2A cells. Neurochem. Res. 37 (2012) 1355-1363.Search in Google Scholar

34. Orellana, J.A., Froger, N., Ezan, P., Jiang, J.X., Bennett, M.V., Naus, C.C., Giaume, C. and Sáez J.C. ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J. Neurochem. 118 (2011) 826-840.Search in Google Scholar

35. Wei, H., Deng, F., Chen, Y., Qin, Y., Hao, Y. and Guo, X. Ultrafine carbon black induces glutamate and ATP release by activating connexin and pannexin hemichannels in cultured astrocytes. Toxicology 323 (2014) 32-41.Search in Google Scholar

36. Suadicani, S.O., Brosnan, C.F. and Scemes, E. P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J. Neurosci. 26 (2006) 1378-1385.Search in Google Scholar

37. Kato, F., Kawamura, M., Shigetomi, E., Tanaka, J. and Inoue, K. ATP- and adenosine-mediated signaling in the central nervous system: synaptic purinoceptors: the stage for ATP to play its "dual-role". J. Pharmacol. Sci. 94 (2004) 107-111.Search in Google Scholar

38. Choi, I.S., Cho, J.H., Lee, M.G. and Jang, I.S. Enzymatic conversion of ATP to adenosine contributes to ATP-induced inhibition of glutamate release in rat medullary dorsal horn neurons. Neuropharmacology 93 (2015) 94-102.Search in Google Scholar

39. Han, T.H., Jang, S.H., Lee, S.Y. and Ryu, P.D. Adenosine reduces GABAergic IPSC frequency via presynaptic A1 receptors in hypothalamic paraventricular neurons projecting to rostral ventrolateral medulla. Neurosci. Lett. 490 (2011) 63-67.Search in Google Scholar

40. Garcia, N., Priego, M., Obis, T., Santafe, M.M., Tomàs, M., Besalduch, N., Lanuza, M.A. and Tomàs, J. Adenosine A1 and A2A receptor-mediated modulation of acetylcholine release in the mice neuromuscular junction. Eur. J. Neurosci. 38 (2013) 2229-2241.Search in Google Scholar

41. Wall, M.J. and Dale, N. Auto-inhibition of rat parallel fibre-Purkinje cell synapses by activity-dependent adenosine release. J. Physiol. 581 (2007) 553-565.Search in Google Scholar

42. Cognato, G.P. and Bonan, C.D. Ectonucleotidases and Epilepsy. Open Neurosci. J. 4 (2010) 44-52. 10.2174/1874082001004010044Search in Google Scholar

43. Cardoso, A.M., Schetinger, M.R., Correia-de-Sá, P. and Sévigny, J. Impact of ectonucleotidases in autonomic nervous functions. Auton. Neurosci. (2015) pii: S1566-0702(15)00051-X. DOI: 10.1016/j.autneu.2015.04.014.10.1016/j.autneu.2015.04.014Search in Google Scholar PubMed

44. Abbracchio, M.P. and Burnstock, G. Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol. Ther. 64 (1994) 445-475.Search in Google Scholar

45. Fredholm, B.B., Abbracchio, M.P., Burnstock, G., Dubyak, G.R., Harden, T.K., Jacobson, K.A., Schwabe, U. and Williams, M. Towards a revised nomenclature for P1 and P2 receptors. Trends Pharmacol. Sci. 18 (1997) 79-82.Search in Google Scholar

46. Ralevic, V. and Burnstock, G. Receptors for purines and pyrimidines. Pharmacol. Rev. 50 (1998) 413-492.Search in Google Scholar

47. Dubyak, G.R. Go it alone no more-P2X7 joins the society of heteromeric ATP-gated receptor channels. Mol. Pharmacol. 72 (2007) 1402-1405.Search in Google Scholar

48. Burnstock, G. Physiology and pathophysiology of purinergic neurotransmission. Physiol. Rev. 87 (2007) 659-797.Search in Google Scholar

49. Rubio, M.E. and Soto, F. Distinct localization of P2X receptors at excitatory postsynaptic specializations. J. Neurosci. 21 (2001) 641-653.Search in Google Scholar

50. Engel, T., Jimenez-Pacheco, A., Miras-Portugal, M.T., Diaz-Hernandez, M. and Henshall, D.C. P2X7 receptor in epilepsy; role in pathophysiology and potential targeting for seizure control. Int. J. Physiol. Pathophysiol. Pharmacol. 4 (2012) 174-187.Search in Google Scholar

51. Decker, D.A. and Galligan, J.J. Molecular mechanisms of cross-inhibition between nicotinic acetylcholine receptors and P2X receptors in myenteric neurons and HEK-293 cells. Neurogastroenterol. Motil. 22 (2010) 901-908.Search in Google Scholar

52. Shrivastava, A.N., Triller, A., Sieghart, W. and Sarto-Jackson, I. Regulation of GABAA receptor dynamics by interaction with purinergic P2X2 receptors. J. Biol. Chem. 286 (2011) 14455-14468.Search in Google Scholar

53. Toulmé, E., Blais, D., Léger, C., Landry, M., Garret, M., Séguéla, P. and Boué-Grabot, E. An intracellular motif of P2X3 receptors is required for functional cross-talk with GABAA receptors in nociceptive DRG neurons. J. Neurochem. 102 (2007) 1357-1368.Search in Google Scholar

54. Karanjia, R., García-Hernández, L.M., Miranda-Morales, M., Somani, N., Espinosa-Luna, R., Montaño, L.M. and Barajas-López, C. Cross-inhibitory interactions between GABAA and P2X channels in myenteric neurones. Eur. J. Neurosci. 23 (2006) 3259-3268.Search in Google Scholar

55. Barajas-López, C., Montaño, L.M. and Espinosa-Luna, R. Inhibitory interactions between 5-HT3 and P2X channels in submucosal neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 283 (2002) G1238-1248.10.1152/ajpgi.00054.2002Search in Google Scholar PubMed

56. Ma, B., Wynn, G., Dunn, P.M. and Burnstock, G. Increased 5-HT3-mediated signaling in pelvic afferent neurons from mice deficient in P2X2 and/or P2X3 receptor subunits. Purinergic Signal. 2 (2006) 481-489.Search in Google Scholar

57. Haydon, P.G. and Carmignoto, G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol. Rev. 86 (2006) 1009-1031.Search in Google Scholar

58. Pankratov, Y., Lalo, U., Krishtal, O.A. and Verkhratsky, A. P2X receptors and synaptic plasticity. Neuroscience 158 (2009) 137-148. Search in Google Scholar

59. Vavra, V., Bhattacharya, A., Jindrichova, M. and Zemkova, H. Facilitation of neurotransmitter and hormone release by P2X purinergic receptors. in: Neuroscience - Dealing With Frontiers (Contreras, C.M., Ed.), InTech, Rijeka, 2012, 61-82.10.5772/36279Search in Google Scholar

60. Abbracchio, M.P. and Ceruti, S. Roles of P2 receptors in glial cells: focus on astrocytes. Purinergic Signal. 2 (2006) 595-604.10.1007/s11302-006-9016-0Search in Google Scholar PubMed PubMed Central

61. Neary, J.T., Kang, Y., Willoughby, K.A. and Ellis, E.F. Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J. Neurosci. 23 (2003) 2348-2356.Search in Google Scholar

62. Panenka, W., Jijon, H., Herx, L.M., Armstrong, J.N., Feighan, D., Wei, T., Yong, V.W., Ransohoff, R.M. and MacVicar, B.A. P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. J. Neurosci. 21 (2001) 7135-7142.Search in Google Scholar

63. Franke, H., Verkhratsky, A., Burnstock, G. and Illes, P. Pathophysiology of astroglial purinergic signaling. Purinergic Signal. 8 (2012) 629-657.Search in Google Scholar

64. Skaper, S.D., Debetto, P. and Giusti, P. The P2X7 purinergic receptor: from physiology to neurological disorders. FASEB J. 24 (2010) 337-345.Search in Google Scholar

65. Monif, M., Reid, C.A., Powell, K.L., Smart, M.L. and Williams, D.A. The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. J. Neurosci. 29 (2009) 3781-3791.Search in Google Scholar

66. Seo, D.R., Kim, S.Y., Kim, K.Y., Lee, H.G., Moon, J.H., Lee, J.S., Lee, S.H., Kim, S.U. and Lee Y.B. Cross talk between P2 purinergic receptors modulates extracellular ATP-mediated interleukin-10 production in rat microglial cells. Exp. Mol. Med. 40 (2008) 19-26.Search in Google Scholar

67. Ohsawa, K., Irino, Y., Nakamura, Y., Akazawa, C., Inoue, K. and Kohsaka, S. Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia 55 (2007) 604-616.Search in Google Scholar

68. Koizumi, S., Ohsawa, K., Inoue, K. and Kohsaka, S. Purinergic receptors in microglia: Functional modal shifts of microglia mediated by P2 and P1 receptors. Glia 61 (2013) 47-54.Search in Google Scholar

69. Choi, H.B., Ryu, J.K., Kim, S.U. and McLarnon, J.G. Modulation of the purinergic P2X7 receptor attenuates lipopolysaccharide-mediated microglial activation and neuronal damage in inflamed brain. J. Neurosci. 27 (2007) 4957-4968.Search in Google Scholar

70. Agresti, C., Meomartini, M.E., Amadio, S., Ambrosini, E., Serafini, B., Franchini, L., Volonté, C., Aloisi, F. and Visentin, S. Metabotropic P2 receptor activation regulates oligodendrocyte progenitor migration and development. Glia 50 (2005) 132-144.Search in Google Scholar

71. Faroni, A., Smith, R.J.P., Procacci, P., Castelnovo, L.F., Puccianti, E., Reid, A.J., Magnaghi, V. and Verkhratsky, A. Purinergic signaling mediated by P2X7 receptors controls myelination in sciatic nerves. J. Neurosci. Res. 92 (2014) 1259-1269. Search in Google Scholar

72. Song, X.M., Xu, X.H., Zhu, J., Guo, Z., Li, J., He, C., Burnstock, G., Yuan, H. and Xiang, Z. Up-regulation of P2X7 receptors mediating proliferation of Schwann cells after sciatic nerve injury. Purinergic Signal. 11 (2015) 203-213.Search in Google Scholar

73. Luo, J., Lee, S., Wu, D., Yeh, J., Ellamushi, H., Wheeler, A.P., Warnes, G., Zhang, Y. and Bo, X. P2X7 purinoceptors contribute to the death of Schwann cells transplanted into the spinal cord. Cell Death Dis. 4 (2013) e829.10.1038/cddis.2013.343Search in Google Scholar

74. Feng, J.F., Gao, X.F., Pu, Y.Y., Burnstock, G., Xiang, Z. and He, C. P2X7 receptors and Fyn kinase mediate ATP-induced oligodendrocyte progenitor cell migration. Purinergic Signal. 11 (2015) 361-369.Search in Google Scholar

75. Inoue, K. and Tsuda, M. Purinergic systems, neuropathic pain and the role of microglia. Exp. Neurol. 234 (2012) 293-301.Search in Google Scholar

76. Tsuda, M., Tozaki-Saitoh, H. and Inoue, K. P2X4R and P2X7R in neuropathic pain. WIREs Membr. Transp. Signal. 1 (2012 ) 513-521.10.1002/wmts.47Search in Google Scholar

77. Burnstock, G. An introduction to the roles of purinergic signaling in neurodegeneration, neuroprotection and neuroregeneration. Neuropharmacology (2015) pii: S0028-3908(15)00212-9. DOI: 10.1016/j.neuropharm.2015.05.031.10.1016/j.neuropharm.2015.05.031Search in Google Scholar

78. Ulrich, H., Abbracchio, M.P. and Burnstock, G. Extrinsic purinergic regulation of neural stem/progenitor cells: implications for CNS development and repair. Stem Cell Rev. 8 (2012) 755-767.10.1007/s12015-012-9372-9Search in Google Scholar

79. Zemková, H., Balík, A., Jindrichová, M. and Vávra, V. Molecular structure of purinergic P2X receptors and their expression in the hypothalamus and pituitary. Physiol. Res. 57 (2008) 23-38.Search in Google Scholar

80. North, R.A. Molecular physiology of P2X receptors. Physiol. Rev. 82 (2002) 1013-1067.Search in Google Scholar

81. Burnstock, G. Purine and pyrimidine receptors. Cell. Mol. Life Sci. 64 (2007) 1471-1483.10.1007/s00018-007-6497-0Search in Google Scholar

82. Habermacher, C., Dunning, K., Chataigneau, T. and Grutter, T. Molecular structure and function of P2X receptors. Neuropharmacology (2015) pii: S0028-3908(15)30039-3. DOI: 10.1016/j.neuropharm.2015.07.032.10.1016/j.neuropharm.2015.07.032Search in Google Scholar

83. Dal Ben, D., Buccioni, M., Lambertucci, C., Marucci, G., Thomas, A. and Volpini, R. Purinergic P2X receptors: structural models and analysis of ligand-target interaction. Eur. J. Med. Chem. 89 (2015) 561-580.Search in Google Scholar

84. Alves, L.A., da Silva, J.H., Ferreira, D.N., Fidalgo-Neto, A.A., Teixeira, P.C., de Souza, C.A., Caffarena, E.R. and de Freitas, M.S. Structural and molecular modeling features of P2X receptors. Int. J. Mol. Sci. 15 (2014) 4531-4549.Search in Google Scholar

85. Wang, L., Feng, D., Yan, H., Wang, Z. and Pei, L. Comparative analysis of P2X1, P2X2, P2X3, and P2X4 receptor subunits in rat nodose ganglion neurons. PLoS One 9 (2014) e96699.10.1371/journal.pone.0096699Search in Google Scholar

86. Kuroda, H., Shibukawa, Y., Soya, M., Masamura, A., Kasahara, M., Tazaki, M. and Ichinohe, T. Expression of P2X1 and P2X4 receptors in rat trigeminal ganglion neurons. Neuroreport. 23 (2012) 752-756. Search in Google Scholar

87. Illes, P. and Ribeiro, A.J. Molecular physiology of P2 receptors in the central nervous system. Eur. J. Pharmacol. 483 (2004) 5-17.Search in Google Scholar

88. Collo, G., North, R.A., Kawashima, E., Merlo-Pich, E., Neidhart, S., Surprenant, A. and Buell, G. Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J. Neurosci. 16 (1996) 2495-2507.Search in Google Scholar

89. Kobayashi, K., Yamanaka, H. and Noguchi, K. Expression of ATP receptors in the rat dorsal root ganglion and spinal cord. Anat. Sci. Int. 88 (2013) 10-16.Search in Google Scholar

90. Mo, G., Bernier, L.P., Zhao, Q., Chabot-Doré, A.J., Ase, A.R., Logothetis, D., Cao, C.Q. and Séguéla, P. Subtype-specific regulation of P2X3 and P2X2/3 receptors by phosphoinositides in peripheral nociceptors. Mol. Pain 5 (2009) 47.Search in Google Scholar

91. Xiang, Z., Bo, X. and Burnstock, G. Localization of ATP-gated P2X receptor immunoreactivity in rat sensory and sympathetic ganglia. Neurosci. Lett. 256 (1998) 105-108.Search in Google Scholar

92. Fischer, W., Appelt, K., Grohmann, M., Franke, H., Nörenberg, W. and Illes, P. Increase of intracellular Ca2+ by P2X and P2Y receptor-subtypes in cultured cortical astroglia of the rat. Neuroscience 160 (2009) 767-783.Search in Google Scholar

93. Coddou, C., Yan, Z., Obsil, T., Huidobro-Toro, J.P. and Stojilkovic, S.S. Activation and regulation of purinergic P2X receptor channels. Pharmacol. Rev. 63 (2011) 641-683.Search in Google Scholar

94. Decker, D.A. and Galligan, J.J. Cross-inhibition between nicotinic acetylcholine receptors and P2X receptors in myenteric neurons and HEK-293 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 296 (2009) G1267-1276.10.1152/ajpgi.00048.2009Search in Google Scholar

95. Limapichat, W., Dougherty, D.A. and Lester, H.A. Subtype-specific mechanisms for functional interaction between α6β4* nicotinic acetylcholine receptors and P2X receptors. Mol. Pharmacol. 86 (2014) 263-274.Search in Google Scholar

96. Sokolova, E., Nistri, A. and Giniatullin, R. Negative cross talk between anionic GABAA and cationic P2X ionotropic receptors of rat dorsal root ganglion neurons. J. Neurosci. 21 (2001) 4958-4968.Search in Google Scholar

97. Xu, X.J., Boumechache, M., Robinson, L.E., Marschall, V., Gorecki, D.C., Masin, M. and Murrell-Lagnado, R.D. Splice variants of the P2X7 receptor reveal differential agonist dependence and functional coupling with pannexin-1. J. Cell Sci. 125 (2012) 3776-3789.Search in Google Scholar

98. Nicke, A. Homotrimeric complexes are the dominant assembly state of native P2X7 subunits. Biochem. Biophys. Res. Commun. 377 (2008) 803-808.Search in Google Scholar

99. Qu, Y., Misaghi, S., Newton, K., Gilmour, L.L., Louie, S., Cupp, J.E., Dubyak, G.R., Hackos, D. and Dixit, V.M. Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J. Immunol. 186 (2011) 6553-6561.Search in Google Scholar

100. Domercq, M., Vázquez-Villoldo, N. and Matute, C. Neurotransmitter signaling in the pathophysiology of microglia. Front. Cell. Neurosci. 7 (2013) 49. Search in Google Scholar

101. Communi, D., Gonzalez, N.S., Detheux, M., Brézillon, S., Lannoy, V., Parmentier, M. and Boeynaems, J.M. Identification of a novel human ADP receptor coupled to Gi. J. Biol. Chem. 276 (2001) 41479-41485.Search in Google Scholar

102. Guzman, S.J., Schmidt, H., Franke, H., Krügel, U., Eilers, J., Illes, P. and Gerevich, Z. P2Y1 receptors inhibit long-term depression in the prefrontal cortex. Neuropharmacology 59 (2010) 406-415.Search in Google Scholar

103. Moriyama, T., Iida, T., Kobayashi, K., Higashi, T., Fukuoka, T., Tsumura, H., Leon, C., Suzuki, N., Inoue, K., Gachet, C., Noguchi, K. and Tominaga, M. Possible involvement of P2Y2 metabotropic receptors in ATP-induced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity. J. Neurosci. 23 (2003) 6058-6062.Search in Google Scholar

104. Yoshioka, K., Hosoda, R., Kuroda, Y. and Nakata, H. Heterooligomerization of adenosine A1 receptors with P2Y1 receptors in rat brains. FEBS Lett. 531 (2002) 299-303.Search in Google Scholar

105. Yoshioka, K. and Nakata, H. ATP- and adenosine-mediated signaling in the central nervous system: purinergic receptor complex: generating adenine nucleotide-sensitive adenosine receptors. J. Pharmacol. Sci. 94 (2004) 88-94.Search in Google Scholar

106. Yoshioka, K., Saitoh, O. and Nakata, H. Heteromeric association creates a P2Ylike adenosine receptor. Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 7617-7622.Search in Google Scholar

107. Scemes, E. and Giaume, C. Astrocyte calcium waves: what they are and what they do. Glia 54 (2006) 716-725.Search in Google Scholar

108. Haynes, S.E., Hollopeter, G., Yang, G., Kurpius, D., Dailey, M.E., Gan, W.B. and Julius, D. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9 (2006) 1512-1519.Search in Google Scholar

109. Ohsawa, K., Irino, Y., Sanagi, T., Nakamura, Y., Suzuki, E., Inoue, K. and Kohsaka, S. P2Y12 receptor-mediated integrin-β1 activation regulates microglial process extension induced by ATP. Glia 58 (2010) 790-801.Search in Google Scholar

110. Koizumi, S., Shigemoto-Mogami, Y., Nasu-Tada, K., Shinozaki, Y., Ohsawa, K., Tsuda, M., Joshi, B.V., Jacobson, K.A., Kohsaka, S. and Inoue, K. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446 (2007) 1091-1095.Search in Google Scholar

111. Franke, H., Krügel, U., Grosche, J., Heine, C., Härtig, W., Allgaier, C. and Illes, P. P2Y receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 127 (2004) 431-441.Search in Google Scholar

112. Washburn, K.B. and Neary, J.T. P2 purinergic receptors signal to STAT3 in astrocytes: Difference in STAT3 responses to P2Y and P2X receptor activation. Neuroscience 142 (2006) 411-423.Search in Google Scholar

113. Malin, S.A. and Molliver, D.C. Gi- and Gq-coupled ADP (P2Y) receptors act in opposition to modulate nociceptive signaling and inflammatory pain behavior. Mol. Pain 6 (2010) 21.Search in Google Scholar

114. Jacobson, K.A., Paoletta, S., Katritch, V., Wu, B., Gao, Z.G., Zhao, Q., Stevens, R.C. and Kiselev, E. Nucleotides acting at P2Y receptors: connecting structure and function. Mol. Pharmacol. 88 (2015) 220-230. Search in Google Scholar

115. Jacobson, K.A. P2X and P2Y receptors. Tocris Bioscience Scientific Review Series 33 (2010) 1-15.Search in Google Scholar

116. Moore, D., Chambers, J., Waldvogel, H., Faull, R. and Emson, P. Regional and cellular distribution of the P2Y1 purinergic receptor in the human brain: striking neuronal localisation. J. Comp. Neurol. 421 (2000) 374-384.10.1002/(SICI)1096-9861(20000605)421:3<374::AID-CNE6>3.0.CO;2-ZSearch in Google Scholar

117. Chambers, J.K., Macdonald, L.E., Sarau, H.M., Ames, R.S., Freeman, K., Foley, J.J., Zhu, Y., McLaughlin, M.M., Murdock, P., McMillan, L., Trill, J., Swift, A., Aiyar, N., Taylor, P., Vawter, L., Naheed, S., Szekeres, P., Hervieu, G., Scott, C., Watson, J.M., Murphy, A.J., Duzic, E., Klein, C., Bergsma, D.J., Wilson, S. and Livi, G.P. A G protein-coupled receptor for UDP-glucose. J. Biol. Chem. 275 (2000) 10767-10771.Search in Google Scholar

118. Moore, D.J., Chambers, J.K., Wahlin, J.P., Tan, K.B., Moore, G.B., Jenkins, O., Emson, P.C. and Murdock, P.R. Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription-polymerase chain reaction study. Biochim. Biophys. Acta 1521 (2001) 107-119.Search in Google Scholar

119. Zhang, F.L., Luo, L., Gustafson, E., Palmer, K., Qiao, X., Fan, X., Yang, S., Laz, T.M., Bayne and Monsma, Jr. F.M. P2Y13: identification and characterization of a novel Gαi-coupled ADP receptor from human and mouse. J. Pharmacol. Exp. Ther. 301 (2002) 705-713.Search in Google Scholar

120. Moore, D.J., Murdock, P.R., Watson, J.M., Faull, R.L., Waldvogel, H.J., Szekeres, P.G., Wilson, S., Freeman, K.B. and Emson, P.C. GPR105, a novel Gi/o-coupled UDP-glucose receptor expressed on brain glia and peripheral immune cells, is regulated by immunologic challenge: possible role in neuroimmune function. Brain Res. Mol. Brain Res. 118 (2003) 10-23.10.1016/S0169-328X(03)00330-9Search in Google Scholar

121. Amadio, S., Vacca, F., Martorana, A., Sancesario, G. and Volonté, C. P2Y1 receptor switches to neurons from glia in juvenile versus neonatal rat cerebellar cortex. BMC Dev. Biol. 7 (2007) 77.Search in Google Scholar

122. Fong, A.Y., Krstew, E.V., Barden, J. and Lawrence, A.J. Immunoreactive localisation of P2Y1 receptors within the rat and human nodose ganglia and rat brainstem: comparison with [α33P]deoxyadenosine 5’-triphosphate autoradiography. Neuroscience 113 (2002) 809-823.Search in Google Scholar

123. Ruan, H.Z. and Burnstock, G. Localisation of P2Y1 and P2Y4 receptors in dorsal root, nodose and trigeminal ganglia of the rat. Histochem. Cell Biol. 120 (2003) 415-426.10.1007/s00418-003-0579-3Search in Google Scholar

124. Volonté, C., Amadio, S., D’Ambrosi, N., Colpi, M., and Burnstock, G. P2 receptor web: complexity and fine-tuning. Pharmacol. Ther. 112 (2006) 264-280.Search in Google Scholar

125. Costanzi, S., Mamedova, L., Gao, Z.G., and Jacobson, K.A. Architecture of P2Y nucleotide receptors: structural comparison based on sequence analysis, mutagenesis, and homology modeling. J. Med. Chem. 47 (2004) 5393-5404.Search in Google Scholar

126. Tonazzini, I., Trincavelli, M.L., Storm-Mathisen, J., Martini, C. and Bergersen, L.H. Colocalization and functional cross-talk between A1 and P2Y1 purine receptors in rat hippocampus. Eur. J. Neurosci. 26 (2007) 890-902.Search in Google Scholar

127. Tonazzini, I., Trincavelli, M.L., Montali, M. and Martini, C. Regulation of A1 adenosine receptor functioning induced by P2Y1 purinergic receptor activation in human astroglial cells. J. Neurosci. Res. 86 (2008) 2857-2866.Search in Google Scholar

128. Suzuki, T., Namba, K., Tsuga, H. and Nakata, H. Regulation of pharmacology by hetero-oligomerization between A1 adenosine receptor and P2Y2 receptor. Biochem. Biophys. Res. Commun. 351 (2006) 559-565.Search in Google Scholar

129. Namba, K., Suzuki, T. and Nakata H. Immunogold electron microscopic evidence of in situ formation of homo- and heteromeric purinergic adenosine A1 and P2Y2 receptors in rat brain. BMC Res. Notes 3 (2010) 323.Search in Google Scholar

130. Ecke, D., Hanck, T., Tulapurkar, M.E., Schäfer, R., Kassack, M., Stricker, R. and Reiser, G. Hetero-oligomerization of the P2Y11 receptor with the P2Y1 receptor controls the internalization and ligand selectivity of the P2Y11 receptor. Biochem. J. 409 (2008) 107-116.Search in Google Scholar

131. Kwon, S.G., Roh, D.H., Yoon, S.Y., Moon, J.Y., Choi, S.R., Choi, H.S., Kang, S.Y., Han, H.J., Beitz, A.J. and Lee, J.H. Blockade of peripheral P2Y1 receptors prevents the induction of thermal hyperalgesia via modulation of TRPV1 expression in carrageenan-induced inflammatory pain rats: involvement of p38 MAPK phosphorylation in DRGs. Neuropharmacology 79 (2014) 368-79.Search in Google Scholar

132. Wang, H., Wang, D.H. and Galligan, J.J. P2Y2 receptors mediate ATPinduced resensitization of TRPV1 expressed by kidney projecting sensory neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298 (2010) R1634-1641.10.1152/ajpregu.00235.2009Search in Google Scholar

133. Burnstock, G. Introduction to purinergic signaling in the brain. Adv. Exp. Med. Biol. 986 (2013) 1-12.Search in Google Scholar

134. Ota, Y., Zanetti, A.T. and Hallock, R.M. The role of astrocytes in the regulation of synaptic plasticity and memory formation. Neural. Plast. 2013 (2013) 185463.Search in Google Scholar

135. Illes, P. and Ribeiro, J.A. Neuronal P2 receptors of the central nervous system. Curr. Top. Med. Chem. 4 (2004) 831-838.Search in Google Scholar

136. Lalo, U., Palygin, O., Rasooli-Nejad, S., Andrew, J., Haydon, P.G. and Pankratov, Y. Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol. 12 (2014) e1001747.10.1371/journal.pbio.1001747Search in Google Scholar

137. Ferreira-Neto, H.C., Yao, S.T. and Antunes, V.R. Purinergic and glutamatergic interactions in the hypothalamic paraventricular nucleus modulate sympathetic outflow. Purinergic Signal. 9 (2013) 337-349.Search in Google Scholar

138. Burnstock, G. Introduction and perspective, historical note. Front. Cell. Neurosci. 7 (2013) 227.Search in Google Scholar

139. Toulme, E. and Khakh, B.S. Imaging P2X4 receptor lateral mobility in microglia: regulation by calcium and p38 MAPK. J. Biol. Chem. 287 (2012) 14734-14748. Search in Google Scholar

140. Davalos, D., Grutzendler, J., Yang, G., Kim, J.V., Zuo, Y., Jung, S., Littman, D.R., Dustin, M.L. and Gan, W-B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8 (2005) 752-758.Search in Google Scholar

141. Wake, H., Moorhouse, A.J., Jinno, S., Kohsaka, S., Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29 (2009) 3974-3980.Search in Google Scholar

142. Pascual, O., Ben Achour, S., Rostaing, P., Triller, A. and Bessis, A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc. Natl. Acad. Sci. U.S.A. 109 (2012) E197-205.10.1073/pnas.1111098109Search in Google Scholar

143. Trang, T., Beggs, S. and Saltera M.W. Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain. Neuron Glia Biol. 7 (2011) 99-108.10.1017/S1740925X12000087Search in Google Scholar

144. Morioka, N., Tokuhara, M., Harano, S., Nakamura, Y., Hisaoka-Nakashima, K. and Nakata, Y. The activation of P2Y6 receptor in cultured spinal microglia induces the production of CCL2 through the MAP kinases-NF-κB pathway. Neuropharmacology 75 (2013) 116-125.Search in Google Scholar

145. Verkhratsky, A., Pankratov, Y., Lalo, U. and Nedergaard, M. P2X receptors in neuroglia. Wiley Interdiscip. Rev. Membr. Transp. Signal. 1 (2012) 151-161.10.1002/wmts.12Search in Google Scholar

146. Li F, Wang L, Li JW, Gong, M., He, L., Feng, R., Dai, Z. and Li, S-Q. Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4. BMC Neurosci. 12 (2011) 111.Search in Google Scholar

147. Inoue, K. UDP facilitates microglial phagocytosis through P2Y6 receptors. Cell Adh. Migr. 1 (2007) 131-132.Search in Google Scholar

148. Webster, C.M., Hokari, M., McManus, A., Tang, X.N., Ma, H., Kacimi, R. and Yenari, M.A. Microglial P2Y12 deficiency/inhibition protects against brain ischemia. PLoS One 8 (2013) e70927.10.1371/journal.pone.0070927Search in Google Scholar

149. Ferreira, R. and Schlichter, L.C. Selective activation of KCa3.1 and CRAC channels by P2Y2 receptors promotes Ca2+ signaling, store refilling and migration of rat microglial cells. PLoS One 8 (2013) e62345.10.1371/journal.pone.0062345Search in Google Scholar

150. Carroll, W.A., Donnelly-Roberts, D. and Jarvis, M.F.. Selective P2X7 receptor antagonists for chronic inflammation and pain. Purinergic Signal. 5 (2009) 63-73.Search in Google Scholar

151. Bartlett, R., Yerbury, J.J. and Sluyter, R. P2X7 receptor activation induces reactive oxygen species formation and cell death in murine EOC13 microglia. Mediat. Inflamm. 2013 (2013) 271813.Search in Google Scholar

152. Friedle, S.A., Brautigam, V.M., Nikodemova, M., Wright, M.L. and Watters, J.J. The P2X7-Egr pathway regulates nucleotide-dependent inflammatory gene expression in microglia. Glia 59 (2011) 1-13.Search in Google Scholar

153. Mead, E.L., Mosley, A., Eaton, S., Dobson, L., Heales, S.J. and Pocock, J.M. Microglial neurotransmitter receptors trigger superoxide production in microglia; consequences for microglial-neuronal interactions. J. Neurochem. 121 (2012) 287-301.Search in Google Scholar

154. Smith, S.M., Mitchell, G.S., Friedle, S.A., Sibigtroth, C.M., Vinit, S. and Watters, J.J. Hypoxia attenuates purinergic P2X receptor-induced inflammatory gene expression in brainstem microglia. Hypoxia (Auckl) 1 (2013). DOI: 10.2147/HP.S45529.10.2147/HP.S45529Search in Google Scholar

155. Inoue, K., Koizumi, S., Kataoka, A., Tozaki-Saitoh, H. and Tsuda, M. P2Y6- evoked microglial phagocytosis. Int. Rev. Neurobiol. 85 (2009) 159-163.10.1016/S0074-7742(09)85012-5Search in Google Scholar

156. Neher, J.J., Neniskyte, U., Hornik, T. and Brown, G.C. Inhibition of UDP/P2Y6 purinergic signaling prevents phagocytosis of viable neurons by activated microglia in vitro and in vivo. Glia 62 (2014) 1463-1475.Search in Google Scholar

157. Bulavina, L., Szulzewsky, F., Rocha, A., Krabbe, G., Robson, S.C., Matyash, V. and Kettenmann, H. NTPDase1 activity attenuates microglial phagocytosis. Purinergic Signal. 9 (2013) 199-205.10.1007/s11302-012-9339-ySearch in Google Scholar PubMed PubMed Central

158. Zabłocka, A. and Janusz, M. The structure and function of central nervous system. Postepy Hig. Med. Dosw. 61 (2007) 454-460.Search in Google Scholar

159. Vijayaraghavan, S. Glial-neuronal interactions-implications for plasticity and drug addiction. AAPS J. 11 (2009) 123-132.Search in Google Scholar

160. Fellin, T., Pascual, O. and Haydona, P.G. Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology (Bethesda) 21 (2006) 208-215.Search in Google Scholar

161. Accorsi-Mendonça, D., Zoccal, D.B., Bonagamba, L.G. and Machado, B.H. Glial cells modulate the synaptic transmission of NTS neurons sending projections to ventral medulla of Wistar rats. Physiol. Rep. 1 (2013) e00080.10.1002/phy2.80Search in Google Scholar PubMed PubMed Central

162. Bhattacharya, A., Vavra, V., Svobodova, I., Bendova, Z., Vereb, G. and Zemkova, H. Potentiation of inhibitory synaptic transmission by extracellular ATP in rat suprachiasmatic nuclei. J. Neurosci. 33 (2013) 8035-8044.Search in Google Scholar

163. Vavra, V., Bhattacharya, A. and Zemkova, H. Facilitation of glutamate and GABA release by P2X receptor activation in supraoptic neurons from freshly isolated rat brain slices. Neuroscience 188 (2011) 1-12.Search in Google Scholar

164. Fam, S.R., Gallagher, C.J., Kalia, L.V. and Salter, M.W. Differential frequency dependence of P2Y1- and P2Y2-mediated Ca2+ signaling in astrocytes. J. Neurosci. 23 (2003) 4437-4444.Search in Google Scholar

165. D’Alimonte, I., Ciccarelli, R., Di Iorio, P., Nargi, E., Buccella, S., Giuliani, P., Rathbone, M.P., Jiang, S., Caciagli, F. and Ballerini, P. Activation of P2X7 receptors stimulates the expression of P2Y2 receptor mRNA in astrocytes cultured from rat brain. Int. J. Immunopathol. Pharmacol. 20 (2007) 301-316.Search in Google Scholar

166. Lalo, U., Andrew, J., Palygin, O. and Pankratov, Y. Ca2+-dependent modulation of GABAA and NMDA receptors by extracellular ATP: implication for function of tripartite synapse. Biochem. Soc. T. 37 (2009) 1407-1411.Search in Google Scholar

167. Palygin, O., Lalo, U., Verkhratsky, A. and Pankratov, Y. Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signaling in cortical astrocytes. Cell Calcium 48 (2010) 225-231.Search in Google Scholar

168. Cho, J.H., Choi, I.S. and Jang, I.S. P2X7 receptors enhance glutamate release in hippocampal hilar neurons. Neuroreport 21 (2010) 865-870. Search in Google Scholar

169. Chen, J., Tan, Z., Zeng, L., Zhang, X., He, Y., Gao, W., Wu, X., Li, Y., Bu, B., Wang, W. and Duan, S. Heterosynaptic long-term depression mediated by ATP released from astrocytes. Glia 61 (2013) 178-191.Search in Google Scholar

170. da Silva, B.M., de Mendonça, A. and Ribeiro, J.A. Long-term depression is not modulated by ATP receptors in the rat CA1 hippocampal region. Neurosci. Lett. 383 (2005) 345-349.Search in Google Scholar

171. Wang, X., Lou, N., Xu, Q., Tian, G.F., Peng, W.G., Han, X., Kang, J., Takano, T. and Nedergaard, M. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat. Neurosci. 9 (2006) 816-823.Search in Google Scholar

172. Franke, H. and Illes, P. Nucleotide signaling in astrogliosis. Neurosci. Lett. 565 (2014) 14-22.10.1016/j.neulet.2013.09.056Search in Google Scholar PubMed

173. Quintas, C., Pinho, D., Pereira, C., Saraiva, L., Gonçalves, J. and Queiroz, G. Microglia P2Y6 receptors mediate nitric oxide release and astrocyte apoptosis. J. Neuroinflammation 11 (2014) 141.Search in Google Scholar

174. Weisman, G.A., Wang, M., Kong, Q., Chorna, N.E., Neary, J.T., Sun, G.Y., González, F.A., Seye, C.I. and Erb, L. Molecular determinants of P2Y2 nucleotide receptor function: implications for proliferative and inflammatory pathways in astrocytes. Mol. Neurobiol. 31 (2005) 169-183.Search in Google Scholar

175. Wang, M., Kong, Q., Gonzalez, F.A., Sun, G., Erb, L., Seye, C. and Weisman, G.A. P2Y2 nucleotide receptor interaction with αv integrin mediates astrocyte migration. J. Neurochem. 95 (2005) 630-640.Search in Google Scholar

176. McCullough, L., Wu, L., Haughey, N., Liang, X., Hand, T., Wang, Q., Breyer and R.M., Andreasson, K. Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J. Neurosci. 24 (2004) 257-268.Search in Google Scholar

177. Fujita, T., Tozaki-Saitoh, H. and Inoue, K. P2Y1 receptor signaling enhances neuroprotection by astrocytes against oxidative stress via IL-6 release in hippocampal cultures. Glia 57 (2009) 244-257.Search in Google Scholar

178. Shinozaki, Y., Koizumi, S., Ohno, Y., Nagao, T. and Inoue, K. Extracellular ATP counteracts the ERK1/2-mediated death-promoting signaling cascades in astrocytes. Glia 54 (2006) 606-618.Search in Google Scholar

179. Kim, B., Jeong, H.K., Kim, J.H., Lee, S.Y., Jou, I. and Joe, E.H. Uridine 5’- diphosphate induces chemokine expression in microglia and astrocytes through activation of the P2Y6 receptor. J. Immunol. 186 (2011) 3701-3709.Search in Google Scholar

180. Barbieri, R., Alloisio, S., Ferroni, S. and Nobile, M. Differential crosstalk between P2X7 and arachidonic acid in activation of mitogen-activated protein kinases. Neurochem. Int. 53 (2008) 255-262.Search in Google Scholar

181. Narcisse, L., Scemes, E., Zhao, Y., Lee, S.C. and Brosnan, C.F. The cytokine IL-1β transiently enhances P2X7 receptor expression and function in human astrocytes. Glia 49 (2005) 245-258.Search in Google Scholar

182. John, G.R., Simpson, J.E., Woodroofe, M.N., Lee, S.C. and Brosnan, C.F. Extracellular nucleotides differentially regulate interleukin-1β signaling in primary human astrocytes: implications for inflammatory gene expression. J. Neurosci. 21 (2001) 4134-4142. Search in Google Scholar

183. Sun, W., McConnell, E., Pare, J.F., Xu, Q., Chen, M., Peng, W., Lovatt, D., Han, X., Smith Y. and Nedergaard, M. Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339 (2013) 197-200.Search in Google Scholar

184. Otsu, Y., Couchman, K., Lyons, D.G., Collot, M., Agarwal, A., Mallet, J.M., Pfrieger, F.W., Bergles, D.E. and Charpak, S. Calcium dynamics in astrocyte processes during neurovascular coupling. Nat. Neurosci. 18 (2015) 210-218.Search in Google Scholar

185. Hashioka, S., Wang, Y.F., Little, J.P., Choi, H.B., Klegeris, A., McGeer, P.L. and McLarnon, J.G. Purinergic responses of calcium-dependent signaling pathways in cultured adult human astrocytes. BMC Neurosci. 15 (2014) 18.Search in Google Scholar

186. Stevens, B., Porta, S., Haak, L.L., Gallo, V. and Fields, R.D. Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36 (2002) 855-868.Search in Google Scholar

187. Ishibashi, T., Dakin, K.A., Stevens, B., Lee, P.R., Kozlov, S.V., Stewart, C.L. and Fields, R.D. Astrocytes promote myelination in response to electrical impulses. Neuron 49 (2006) 823-832.Search in Google Scholar

188. Fields, R.D. Nerve impulses regulate myelination through purinergic signaling. Novart. Fdn. Symp. 276 (2006) 148-158.Search in Google Scholar

189. Ceruti, S., Viganò, F., Boda, E., Ferrario, S., Magni, G., Boccazzi, M., Rosa, P., Buffo, A. and Abbracchio, M.P. Expression of the new P2Y-like receptor GPR17 during oligodendrocyte precursor cell maturation regulates sensitivity to ATP-induced death. Glia 59 (2011) 363-378.Search in Google Scholar

190. Lin, J.H., Takano, T., Arcuino, G., Wang, X., Hu, F., Darzynkiewicz, Z., Nunes, M., Goldman, S.A. and Nedergaard, M. Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Dev. Biol. 302 (2007) 356-366.Search in Google Scholar

191. Lecca, D., Trincavelli, M.L., Gelosa, P., Sironi, L., Ciana, P., Fumagalli, M., Villa, G., Verderio, C., Grumelli, C., Guerrini, U., Tremoli, E., Rosa, P., Cuboni, S., Martini, C., Buffo, A., Cimino, M. and Abbracchio M.P. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS One 3 (2008) e3579. 10.1371/journal.pone.0003579Search in Google Scholar PubMed PubMed Central

Received: 2015-5-8
Accepted: 2015-10-29
Published Online: 2016-3-5
Published in Print: 2015-12-1

© University of Wroclaw, Poland

Articles in the same Issue

  1. How taste works: cells, receptors and gustatory perception
  2. Non-cooperative immobilization of residual water bound in lyophilized photosynthetic lamellae
  3. Coexistence of rare variant HbD Punjab [α2β2121(Glu→Gln)] and alpha 3.7 kb deletion in a young boy of Hindu family in West Bengal, India
  4. Somatic stem cell aging and malignant transformation – impact on therapeutic application
  5. 1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing
  6. Homology arms of targeting vectors for gene insertions and CRISPR/Cas9 technology: size does not matter; quality control of targeted clones does
  7. Death domain associated protein (Daxx), a multi-functional protein
  8. In silico screening of alleged miRNAs associated with cell competition: an emerging cellular event in cancer
  9. MGL induces nuclear translocation of EndoG and AIF in caspase-independent T cell death
  10. Cerivastatin represses atherogenic gene expression through the induction of KLF2 via isoprenoid metabolic pathways
  11. Proteasomes raise the microtubule dynamics in influenza A (H1N1) virus-infected LLC-MK2 cells
  12. Purinergic signaling and the functioning of the nervous system cells
  13. The effect of cultureware surfaces on functional and structural components of differentiated 3T3-L1 preadipocytes
  14. Ramipril inhibits high glucose-stimulated up-regulation of adhesion molecules via the ERK1/2 MAPK signaling pathway in human umbilical vein endothelial cells
  15. The effect of nicotine on the expressions of the α7 nicotinic receptor gene and Bax and Bcl-2 proteins in the mammary gland epithelial-7 breast cancer cell line and its relationship to drug resistance
  16. The cloning, expression and purification of recombinant human neuritin from Escherichia coli and the partial analysis of its neurobiological activity
Downloaded on 5.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cmble-2015-0050/html
Scroll to top button