Home Somatic stem cell aging and malignant transformation – impact on therapeutic application
Article
Licensed
Unlicensed Requires Authentication

Somatic stem cell aging and malignant transformation – impact on therapeutic application

  • Marcela Kuniakova , Lenka Oravcova , Zuzana Varchulova-Novakova , Diana Viglaska and Lubos Danisovic EMAIL logo
Published/Copyright: March 5, 2016
Become an author with De Gruyter Brill

Abstract

Somatic stem cells possess unique properties of self-renewal and plasticity which make them promising candidates for use in tissue engineering and regenerative medicine, in addition to serving as efficient delivery vehicles in site-specific therapy. In the case of therapeutic application, it is essential to isolate and culture stem cells in vitro, to obtain them in sufficient quantities. Although long-term cultivation provides an adequate number of cells, it has been shown that this approach is associated with increased risk of transformation of cultured cells, which presents a significant biological hazard. This article reviews information about biological features and cellular events which occur during long-term cultivation of somatic stem cells, with respect to their safe utilization in potential clinical practice.

References

1. Satija, N.K., Gurudutta, G.U., Sharma, S., Afrin, F., Gupta, P., Verma, Y.K., Singh, V.K. and Tripathi, RP. Mesenchymal stem cells: molecular targets for tissue engineering. Stem Cells Dev. 16 (2007) 7-23.Search in Google Scholar

2. Bunnell, B.A., Estes, B.T., Guilak, F. and Gimble, J.M. Differentiation of adipose stem cells. Metods. Mol. Biol. 450 (2008) 155-171.Search in Google Scholar

3. Yang, X.F., He, X., He, J., Zhang, L.H., Su, X.J., Dong, Z.Y., Xu, Y.J., Li, Y. and Li, Y.L. High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells. J. Biomed. Sci. 18 (2011) 59.Search in Google Scholar

4. Wang, H.S., Hung, S.C. and Peng, S.T. Mesenchymal stem cells in the Wharton´s jelly of the human umbilical cord. Stem cells 22 (2004) 1330-1337.Search in Google Scholar

5. Troyer, D.L. and Weis, M.L. Wharton´s jelly-derived cells are primitive stromal cells population. Stem cells 26 (2008) 591-599.Search in Google Scholar

6. Gronthos, S., Mankani, M., Brahim, J., Robey, P.G. and Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 13625-13630.Search in Google Scholar

7. Kovac, J. and Kovac, D. Neonatal teeth. Bratisl. Lek. Listy 112 (2011) 648-650.Search in Google Scholar

8. Atari, M., Gil-Recio, C., Fabregat, M., García-Fernández, D.A., Barajas, M., Carrasco, M., Jung, H.S., Hernández-Alfaro, F., Casals, N., Prosper, F., Ferrés, P.E. and Giner, L. Dental Pulp of the Third Molar: A new source of pluripotent-like stem cells. J. Cell Sci. 125 (2012) 3343-3356.Search in Google Scholar

9. Kögler, G., Sensken, S., Airey, J.A., Trapp, T., Müschen, M., Feldhahn, N., Liedtke, S., Sorg, R.V., Fischer, J., Rosenbaum, C., Greschat, S., Knipper, A., Bender, J., Degistirici, O., Gao, J., Caplan, A.I., Colletti, E.J., Almeida- Porada, G., Müller, H.W., Zanjani, E. and Wernet, P. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J. Exp. Med. 200 (2004) 123-135.Search in Google Scholar

10. Motaln, H., Schichor, C. and Lah, T.T. Human mesenchymal stem cells and their use in cell-based therapies. Cancer 116 (2010) 2519-2530.Search in Google Scholar

11. Tonti, G.A. and Mannello, F. From bone marrow to therapeutic applications: different behaviour and genetic/epigenetic stability during mesenchymal stem cell expansion in autologous and foetal bovine sera? Int. J. Dev. Biol. 52 (2008) 1023-1032.Search in Google Scholar

12. Mimeault, M. and Batra, S.K. Recent insights into the molecular mechanisms involved in aging and the malignant transformation of adult stem/progenitor cells and their therapeutic implications. Ageing Res. Rev. 8 (2009) 94-112.Search in Google Scholar

13. Signer, R.A. and Morrison, S.J. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 12 (2013) 152-165.Search in Google Scholar

14. Wang, X., Li, W., Zheng, J., Chen, Q., Zou, H., Ma, L., Lin, G., Huang, T., Huang, G. and Yang, L. Tumor suppressor gene alterations of spontaneously malignant transformed cells from human embryonic muscle in vitro. Oncol. Rep. 24 (2010) 555-561.Search in Google Scholar

15. Deng, Y. and Chang, S. Role of telomeres and telomerase in genomic instability, senescence and cancer. Lab. Invest. 87 (2007) 1071-1076.Search in Google Scholar

16. Wilson, A. and Trumpp, A. Bone-marrow haematopoietic-stem-cell niches. Nat. Rev. Immunol. 6 (2006) 93-106.Search in Google Scholar

17. Wang, X. Discovery of molecular associations among aging, stem cells, and cancer based on gene expression profiling. Chin. J. Cancer 32 (2013) 155-161.Search in Google Scholar

18. Yu, K.R. and Kang, K.S. Aging-related genes in mesenchymal stem cells: a mini-review. Gerontology 59 (2013) 557-563.Search in Google Scholar

19. LaPak, K.M. and Burd, C.E. The molecular balancing act of p16INK4a in cancer and aging. Mol. Cancer Res. 12 (2014) 167-183.Search in Google Scholar

20. Zhu, Y., Song, X., Han, F., Li, Y., Wei, J. and Liu, X. Alteration of histone acetylation pattern during long-term serum-free culture conditions of human fetal placental mesenchymal stem cells. PLoS One 10 (2015) e0117068.10.1371/journal.pone.0117068Search in Google Scholar

21. Kinzler, K.W. and Vogelstein, B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386 (1997) 761-763.Search in Google Scholar

22. He, S., Nakada, D. and Morrison, S.J. Mechanisms of stem cell self-renewal. Annu. Rev. Cell Dev. Biol. 25 (2009) 377-406.Search in Google Scholar

23. Krishnamurthy, J., Torrice, C., Ramsey, M.R., Kovalev, G.I., Al-Regaiey, K., Su, L. and Sharpless, N.E. Ink4a/Arf expression is a biomarker of aging. J Clin Invest. 114 (2004) 1299-1307.Search in Google Scholar

24. Krishnamurthy, J., Ramsey, M.R., Ligon, K.L., Torrice, C., Koh, A., Bonner-Weir, S. and Sharpless, N.E. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443 (2006) 453-457.Search in Google Scholar

25. Janzen, V., Forkert, R., Fleming, H.E., Saito, Y., Waring, M.T., Dombkowski, D.M., Cheng, T., DePinho, R.A., Sharpless, N.E. and Scadden, D.T. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443 (2006) 421-426.Search in Google Scholar

26. Molofsky, A.V., Slutsky, S.G., Joseph, N.M., He, S., Pardal, R., Krishnamurthy, J., Sharpless, N.E. and Morrison, S.J. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443 (2006) 448-452.Search in Google Scholar

27. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120 (2005) 513-522. Search in Google Scholar

28. Signer, R.A., Montecino-Rodriguez, E., Witte, O.N. and Dorshkind, K. Aging and cancer resistance in lymphoid progenitors are linked processes conferred by p16Ink4a and Arf. Genes Dev. 22 (2008) 3115-3120.Search in Google Scholar

29. Rayess, H., Wang, M.B. and Srivatsan, E.S. Cellular senescence and tumor suppressor gene p16. Int. J. Cancer 130 (2012) 1715-1725.Search in Google Scholar

30. Qian, Y. and Chen, X. Tumor suppression by p53: making cells senescent. Histol. Histopathol. 25 (2010) 515-526.Search in Google Scholar

31. Qian, Y. and Chen, X. Senescence regulation by the p53 protein family. Methods Mol. Biol. 965 (2013) 37-61.Search in Google Scholar

32. Hollstein, M., Sidransky, D., Vogelstein, B. and Harris, C.C. p53 mutations in human cancers. Science 253 (1991) 49-53.Search in Google Scholar

33. Lee, J.Y., Nakada, D., Yilmaz, O.H., Tothova, Z., Joseph, N.M., Lim, M.S., Gilliland, D.G. and Morrison, S.J. mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 7 (2010) 593-605.Search in Google Scholar

34. Tyner, S.D., Venkatachalam, S., Choi, J., Jones, S., Ghebranious, N., Igelmann, H., Lu, X., Soron, G., Cooper, B., Brayton, C., Park, S.H., Thompson, T., Karsenty, G., Bradley, A. and Donehower, L.A. p53 mutant mice that display early ageing-associated phenotypes. Nature 415 (2002) 45-53.Search in Google Scholar

35. Dumble, M., Moore, L., Chambers, S.M., Geiger, H., van Zant, G., Goodell, M.A. and Donehower, L.A. The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood 109 (2007) 1736-1742.Search in Google Scholar

36. Gannon, H.S., Donehower, L.A., Lyle, S. and Jones, S.N. Mdm2-p53 signaling regulates epidermal stem cell senescence and premature aging phenotypes in mouse skin. Dev. Biol. 353 (2011) 1-9.Search in Google Scholar

37. Pekovic, V. and Hutchison, C.J. Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J. Anat. 213 (2008) 5-25.Search in Google Scholar

38. Scadden, D.T. The stem-cell niche as an entity of action. Nature 441 (2006) 1075-1079.Search in Google Scholar

39. Hutchison, C.J. and Worman, H.J. A type lamins: guardians of the soma? Nat Cell Biol. 6 (2004) 1062-1067.10.1038/ncb1104-1062Search in Google Scholar

40. Saeed, H. and Iqtedar, M. Stem cell function and maintenance - ends that matter: role of telomeres and telomerase. J. Biosci. 38 (2013) 641-649.Search in Google Scholar

41. Hayflick, L. and Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25 (1961) 585-621.Search in Google Scholar

42. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37 (1965) 614-636.Search in Google Scholar

43. Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I. and Pereira-Smith, O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U.S.A. 92 (1995) 9363-9367. Search in Google Scholar

44. Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., Saffrich, R., Benes, V., Blake, J., Pfister, S., Eckstein, V. and Ho, A.D. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3 (2008) e2213.10.1371/journal.pone.0002213Search in Google Scholar

45. Faragher, R.G. and Kipling, D. How might replicative senescence contribute to human ageing? Bioessays 20 (1998) 985-991.Search in Google Scholar

46. Izadpanah, R., Kaushal, D., Kriedt, C., Tsien, F., Patel, B., Dufour, J. and Bunnell, B.A. Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Res. 68 (2008) 4229-4238.Search in Google Scholar

47. Rubio, D., Garcia-Castro, J., Martín, M.C., de la Fuente, R., Cigudosa, J.C., Lloyd, A.C. and Bernad, A. Spontaneous human adult stem cell transformation. Cancer Res. 65 (2005) 3035-3039.Search in Google Scholar

48. Rubio, D., Garcia, S., Paz, M.F., de la Cueva, T., Lopez-Fernandez, L.A., Lloyd, A.C., Garcia-Castro, J. and Bernad, A. Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS One 3 (2008) e1398.10.1371/journal.pone.0001398Search in Google Scholar

49. Wang, Y., Huso, D.L., Harrington, J., Kellner, J., Jeong, D.K., Turney, J. and McNiece, I.K. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy 7 (2005) 509-519.Search in Google Scholar

50. Røsland, G.V., Svendsen, A., Torsvik, A., Sobala, E., McCormack, E., Immervoll, H., Mysliwietz, J., Tonn, J.C., Goldbrunner, R., Lønning, P.E., Bjerkvig, R. and Schichor, C. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 69 (2009) 5331-5339.Search in Google Scholar

51. Beausejour, C.M. and Campisi, J. Ageing: balancing regeneration and cancer. Nature 443 (2006) 404-405.Search in Google Scholar

52. Knapowski, J., Wieczorowska-Tobis, K. and Witowski, J. Pathophysiology of aging. J. Physiol. Pharmacol. 53 (2002) 135-146.Search in Google Scholar

53. Krtolica, A. and Campisi, J. Integrating epithelial cancer, aging stroma and cellular senescence. Adv. Gerontol. 11 (2003) 109-116.Search in Google Scholar

54. Campisi, J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 11 (2001) S27-S31.10.1016/S0962-8924(01)82148-6Search in Google Scholar

55. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P.Y. and Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 12072-12077.Search in Google Scholar

56. Smogorzewska, A. and de Lange, T. Different telomere damage signaling pathways in human and mouse cells. EMBO J. 21 (2002) 4338-4348.Search in Google Scholar

57. Palm, W. and de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 42 (2008) 301-334.Search in Google Scholar

58. Sahin, E. and Depinho, RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464 (2010) 520-528. Search in Google Scholar

59. Holysz, H., Lipinska, N., Paszel-Jaworska, A. and Rubis, B. Telomerase as a useful target in cancer fighting-the breast cancer case. Tumour Biol. 34 (2013) 1371-1380.Search in Google Scholar

60. Kassem, M., Abdallah, B.M., Yu, Z., Ditzel, N. and Burns, J.S. The use of hTERT-immortalized cells in tissue engineering. Cytotechnology 45 (2004) 39-46.Search in Google Scholar

61. Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L., Coviello, G.M., Wright, W.E., Weinrich, S.L. and Shay, J.W. Specific association of human telomerase activity with immortal cells and cancer. Science 266 (1994) 2011-2015.Search in Google Scholar

62. Kim, N.W. Clinical implications of telomerase in cancer. Eur. J. Cancer 33 (1997) 781-786.Search in Google Scholar

63. Shay, J.W. and Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 33 (1997) 787-791.Search in Google Scholar

64. Goodwin, H.S., Bicknese, A.R., Chien, S.N., Bogucki, B.D., Quinn, C.O. and Wall, D.A. Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol. Blood Marrow Transplant. 7 (2001) 581-588.10.1053/bbmt.2001.v7.pm11760145Search in Google Scholar PubMed

65. Stenderup, K., Justesen, J., Clausen, C. and Kassem, M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33 (2003) 919-926.Search in Google Scholar

66. Saeed, H. and Iqtedar, M. Bone Marrow Stromal Cell (BMSC) and skeletal aging: role of telomerase enzyme. Pak. J. Pharm. Sci. 27 (2014) 321-333.Search in Google Scholar

67. Dick, J.E. Breast cancer stem cells revealed. Proc. Natl. Acad. Sci. U.S.A. 100 (2003) 3547-3549.10.1073/pnas.0830967100Search in Google Scholar PubMed PubMed Central

68. Yu, Y., Park, Y.S., Kim, H.S., Kim, H.Y., Jin, Y.M., Jung, S.C., Ryu, K.H. and Jo, I. Characterization of long-term in vitro culture-related alterations of human tonsil-derived mesenchymal stem cells: role for CCN1 in replicative senescence-associated increase in osteogenic differentiation. J. Anat. 225 (2014) 510-518.Search in Google Scholar

69. Miura, M., Miura, Y., Padilla-Nash, H.M., Molinolo, A.A., Fu, B., Patel, V., Seo, B.M., Sonoyama, W., Zheng, J.J., Baker, C.C., Chen, W., Ried, T. and Shi, S. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24 (2006) 1095-1103.Search in Google Scholar

70. Wu, W., He, Q., Li, X., Zhang, X., Lu, A., Ge, R., Zhen, H., Chang, A.E., Li, Q. and Shen, L. Long-term cultured human neural stem cells undergo spontaneous transformation to tumor-initiating cells. Int. J. Biol. Sci. 7 (2011) 892-901. Search in Google Scholar

Received: 2015-4-27
Accepted: 2015-10-7
Published Online: 2016-3-5
Published in Print: 2015-12-1

© University of Wroclaw, Poland

Articles in the same Issue

  1. How taste works: cells, receptors and gustatory perception
  2. Non-cooperative immobilization of residual water bound in lyophilized photosynthetic lamellae
  3. Coexistence of rare variant HbD Punjab [α2β2121(Glu→Gln)] and alpha 3.7 kb deletion in a young boy of Hindu family in West Bengal, India
  4. Somatic stem cell aging and malignant transformation – impact on therapeutic application
  5. 1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing
  6. Homology arms of targeting vectors for gene insertions and CRISPR/Cas9 technology: size does not matter; quality control of targeted clones does
  7. Death domain associated protein (Daxx), a multi-functional protein
  8. In silico screening of alleged miRNAs associated with cell competition: an emerging cellular event in cancer
  9. MGL induces nuclear translocation of EndoG and AIF in caspase-independent T cell death
  10. Cerivastatin represses atherogenic gene expression through the induction of KLF2 via isoprenoid metabolic pathways
  11. Proteasomes raise the microtubule dynamics in influenza A (H1N1) virus-infected LLC-MK2 cells
  12. Purinergic signaling and the functioning of the nervous system cells
  13. The effect of cultureware surfaces on functional and structural components of differentiated 3T3-L1 preadipocytes
  14. Ramipril inhibits high glucose-stimulated up-regulation of adhesion molecules via the ERK1/2 MAPK signaling pathway in human umbilical vein endothelial cells
  15. The effect of nicotine on the expressions of the α7 nicotinic receptor gene and Bax and Bcl-2 proteins in the mammary gland epithelial-7 breast cancer cell line and its relationship to drug resistance
  16. The cloning, expression and purification of recombinant human neuritin from Escherichia coli and the partial analysis of its neurobiological activity
Downloaded on 5.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cmble-2015-0045/html
Scroll to top button