Startseite Efficient utilization of inulin and glycerol as fermentation substrates in erythritol and citric acid production using Yarrowia lipolytica expressing inulinase
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Efficient utilization of inulin and glycerol as fermentation substrates in erythritol and citric acid production using Yarrowia lipolytica expressing inulinase

  • Magdalena Rakicka EMAIL logo , Zbigniew Lazar , Anita Rywińska und Waldemar Rymowicz
Veröffentlicht/Copyright: 18. Juli 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Inulin and glycerol were used as substrates for efficient erythritol and citric acid production by newly engineered Yarrowia lipolytica strains. Hydrolysis of inulin by the Y. lipolytica Wratislavia K1 strain was established by expressing the Kluyveromyces marxianus INU1 gene. Erythritol was produced in two stages: inulin was used for biomass formation, followed by erythritol biosynthesis initiated by glycerol addition. The highest titer of erythritol obtained, 120.9 g L−1 with the yield of 0.6 g g−1, was produced by the K1 INU 6 strain. Moreover, the K1 INU 6 strain in fed-batch culture produced a high amount of citric acid: 105.2 g L−1 after 235 h from 200 g L−1 of inulin. Maximum activity of inulinase during this culture was 14000 U g−1 of cell dry mass. The presented study proves the potential of new Y. lipolytica transformants for efficient erythritol and citric acid production from inexpensive raw materials such as inulin and glycerol.

Acknowledgements

Project supported by the Wroclaw Centre of Biotechnology, programme The Leading National Research Centre (KNOW) for years 2014-2018.

References

Akiyama, S., Suzuki, T., Sumino, Y., Nakao, Y., & Fukuda, H. (1973a). Induction and citric acid productivity of fluoroacetate-sensitive mutant strains of Candida lipolytica. Agricultural and Biological Chemistry, 37, 879–884. 10.1271/bbb1961.37.879.Suche in Google Scholar

Akiyama S., Suzuki, T., Sumino, Y., Nakao, Y., Fukuda, H., (1973b). Relationship between aconitate hydratase activity and citric acid productivity in fluoroacetate-sensitive mutant strain of Candida lipolytica. Agricultural and Biological Chemistry, 37, 885–888. 10.1271/bbb1961.37.885Suche in Google Scholar

Baldwin, T. K., Gaffoor, I., Antoniw, J., Andries, C., Guenther, J., Urban, M., Hallen-Adams, H. E., Pitkin, J., Hammond-Kosack, K. E., & Trail, F. (2010). A partial chromosomal deletion caused by random plasmid integration resulted in a reduced virulence phenotype in Fusarium graminearum. Molecular Plant-Microbe Interactions, 23, 1083–1096. 10.1094/mpmi-23-8-1083.Suche in Google Scholar

Chi, Z., Chi, Z., Zhang, T., Liu, G., & Yue, L. (2009). Inulinase-expressing microorganisms and applications of inulinases. Applied Microbiology and Biotechnology, 82, 211–220. 10.1007/s00253-008-1827-1.Suche in Google Scholar PubMed

Chi, Z. M., Zhang, T., Cao, T. S., Liu, X. Y., Cui, W., & Zhao, C. H. (2011). Biotechnological potential of inulin for bioprocesses. Bioresource Technology, 102, 4295–4303. 10.1016/j.biortech.2010.12.086.Suche in Google Scholar PubMed

Crolla, A., & Kennedy, K. J. (2004). Fed-batch production of citric acid by Candida lipolytica grown on n-paraffins. Journal of Biotechnology, 110, 73–84. 10.1016/j.jbiotec.2004.01.007.Suche in Google Scholar PubMed

Cui, W., Wang, Q., Zhang, F., Zhang, S. C., Chi, Z. M., & Madzak, C. (2011). Direct conversion of inulin into single cell protein by the engineered Yarrowia lipolytica carrying inulinase gene. Process Biochemistry, 46, 1442–1448. 10.1016/j.procbio.2011.03.017.Suche in Google Scholar

Dashtban, M., Schraft, H., Syed, T. A., & Qin, W. (2010). Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemistry and Molecular Biology, 1, 36–50.Suche in Google Scholar

Finogenova, T. V., Shishkanova, N. V., Fausek, E. A., & Eremina, S. S. (1991). Biosynthesis of isocitric acid from ethanol by yeasts. Applied Microbiology and Biotechnology, 36, 231–235. 10.1007/bf00164426.Suche in Google Scholar

Finogenova, T. V., Morgunov, I. G., Kamzolova, S. V., & Chernyavskaya, O. G. (2005). Organic acid production by the yeast Yarrowia lipolytica: A review of prospects. Applied Biochemistry and Microbiology, 41, 418–425. 10.1007/s10438-005-0076-7.Suche in Google Scholar

Förster, A., Jacobs, K., Juretzek, T., Mauersberger, S., & Barth, G. (2007a). Overexpression of the ICL1 gene changes the product ratio of citric acid production by Yarrowia lipolytica. Applied Microbiology and Biotechnology, 77, 861–869. 10.1007/s00253-007-1205-4.Suche in Google Scholar PubMed

Förster, A., Aurich, A., Mauersberger, S., & Barth, G. (2007b). Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 75, 1409–1417. 10.1007/s00253-007-0958-0.Suche in Google Scholar

Franck, A. (2002). Technological functionality of inulin and oligofructose. British Journal of Nutrition, 87, S287-S291. 10.1079/bjn/2002550.Suche in Google Scholar

Gong, F., Sheng, J., Chi, Z., & Li, J. (2007). Inulinase production by a marine yeast Pichia guilliermondii and inulin hydrolysis by the crude inulinase. Journal of Industrial Microbiology & Biotechnology, 34, 179–185. 10.1007/s10295-006-0184-2.Suche in Google Scholar

Grand View Research (2015). Inulin market analysis by application (food & beverage, dietary supplements, pharmaceuticals) and segment forecasts to 2020. Retrieved from http://www.grandviewresearch.com/industry-analysis/inulin-marketSuche in Google Scholar

Gritz, L., & Davies, J. (1983). Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene, 25, 179–188. 10.1016/0378-1119(83)90223-8.Suche in Google Scholar

Holz, M., Förster, A., Mauersberger, S., & Barth, G. (2009). Aconitase overexpression changes the product ratio of citric acid production by Yarrowia lipolytica. Applied Microbiology and Biotechnology, 81, 1087–1096. 10.1007/s00253-008-1725-6.Suche in Google Scholar

Jeya, M., Lee, K. M., Tiwari, M. K., Kim, J. S., Gunasekaran, P., Kim, S. Y., Kim, I. W., & Lee, J. K. (2009). Isolation of a novel high erythritol-producing Pseudozyma tsukubaensis and scale-up of erythritol fermentation to industrial level. Applied Microbiology and Biotechnology, 83, 225–231. 10.1007/s00253-009-1871-5.Suche in Google Scholar

Kamzolova, S. V., Morgunov, I. G., Aurich, A., Perevoznikova, O. A., Shishkanova, N. V., Stottmeister, U., & Finogenova, T. V. (2005). Lipase secretion and citric acid production in Yarrowia lipolytica yeast grown on animal and vegetable fat. Food Technology and Biotechnology, 43, 113–122.Suche in Google Scholar

Kamzolova, S. V., Finogenova, T. V., & Morgunov, I. G. (2008). Microbial production of citric and isocitric acids from sunflower oil. Food Technology and Biotechnology, 46, 51–59.Suche in Google Scholar

Kobayashi, Y., Iwata, H., Mizushima, D., Ogihara, J., & Kasumi, T. (2015). Erythritol production by Moniliella megachiliensis using nonrefined glycerol waste as carbon source. Letters in Applied Microbiology, 60, 475–480. 10.1111/lam.12391.Suche in Google Scholar

Lazar, Z., Walczak, E., & Robak, M. (2011). Simultaneous production of citric acid and invertase by Yarrowia lipolytica SUC+ transformants. Bioresource Technology, 102, 6982–6989. 10.1016/j.biortech.2011.04.032.Suche in Google Scholar

Lin, S. J., Wen, C. Y., Liau, J. C., & Chu, W. S. (2001). Screening and production of erythritol by newly isolated osmophilic yeast-like fungi. Process Biochemistry, 36, 1249–1258. 10.1016/s0032-9592(01)00169-8.Suche in Google Scholar

Lin, S. J., Wen, C. Y., Wang, P. M., Huang, J. C., Wei, C. L., Chang, J. W., & Chu, W. S. (2010). High-level production of erythritol by mutants of osmophilic Moniliella sp. Process Biochemistry, 45, 973–979. 10.1016/j.procbio.2010.03.003.Suche in Google Scholar

Liu, X. Y., Chi, Z., Liu, G. L., Wang, F., Madzak, C., & Chi, Z. M. (2010). Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase. Metabolic Engineering, 12, 469–476. 10.1016/j.ymben.2010.04.004.Suche in Google Scholar PubMed

Liu, X. Y., Chi, Z., Liu, G. L., Madzak, C., & Chi, Z. M. (2013). Both decrease in ALC1 gene expression and increase in ICL1 gene expression in marine-derived yeast Yarrowia lipolytica expressing INU1 gene enhance citric acid production from inulin. Marine Biotechnology, 15, 26–36. 10.1007/s10126012-9452-5.Suche in Google Scholar

Mauersberger, S., Wang, H. J., Gaillardin, C., Barth, G., & Nicaud, J. M. (2001). Insertional mutagenesis in the n-alkane-assimilating yeast Yarrowia lipolytica: Generation of tagged mutations in genes involved in hydrophobic substrate utilization. Journal of Bacteriology, 183, 5102–5109. 10.1128/jb. 183.17.5102-5109.2001.Suche in Google Scholar

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428. 10.1021/ac60147a030.Suche in Google Scholar

Pagliaro, M., & Rossi, M. (2008). The future of glycerol: New usages for a versatile raw material (RSC green chemistry series, Book 1). Cambridge, UK: The Royal Society of Chemistry. 10.1039/9781847558305.Suche in Google Scholar

Rymowicz, W., Rywińska, A., Żarowska, B., & Juszczyk, P. (2006). Citric acid production from raw glycerol by acetate mutants of Yarrowia lipolytica. Chemical Papers, 60, 391–394. 10.2478/s11696-006-0071-3.Suche in Google Scholar

Rymowicz, W., Rywińska, A., & Marcinkiewicz, M. (2009). High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnology Letters, 31, 377–380. 10.1007/s10529-008-9884-1.Suche in Google Scholar PubMed

Rywińska, A., Skrzypiński, A., Juszczyk, P., Boruczkowski, T., & Rymowicz, W. (2008). Characteristics of citric acid and some polyols biosynthesis from glycerol and glucose by Yarrowia lipolytica yeast. Acta Scientiarum Polonorum, Biotechnologia, 7, 27–38. (in Polish)Suche in Google Scholar

Rywińska, A., Rymowicz, W., Żarowska, B., & Wojtatowicz, M. (2009). Biosynthesis of citric acid from glycerol by acetate mutants of Yarrowia lipolytica in fed-batch fermentation. Food Technology and Biotechnology, 47, 1–6.Suche in Google Scholar

Rywińska, A., Juszczyk, P., Wojtatowicz, M., Robak, M., Lazar, Z., Tomaszewska, L., & Rymowicz, W. (2013a). Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications. Biomass and Bioenergy, 48, 148–166. 10.1016/j.biombioe.2012.11.021.Suche in Google Scholar

Rywińska, A., Tomaszewska, L., & Rymowicz, W. (2013b). Erythritol biosynthesis by Yarrowia lipolytica yeast under various culture conditions. African Journal of Microbiology Research, 7, 3511–3516. 10.5897/ajmr12.2272.Suche in Google Scholar

Schmid-Berger, N., Schmid, B., & Barth, G. (1994). Ylt1, a highly repetitive retrotransposon in the genome of the dimorphic fungus Yarrowia lipolytica. Journal of Bacteriology, 176, 2477–2482.10.1128/jb.176.9.2477-2482.1994Suche in Google Scholar PubMed PubMed Central

Shigechi, H., Koh, J., Fujita, Y., Matsumoto, T., Bito, Y., Ueda, M., Satoh, E., Fukuda, H., & Kondo, A. (2004). Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and α-amylase. Applied and Environmental Microbiology, 70, 5037–5040. 10.1128/aem.70.8.5037-5040.2004.Suche in Google Scholar

Tomaszewska, L., Rywińska, A., & Gładkowski, W. (2012). Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. Journal of Industrial Microbioliology & Biotechnology, 39, 1333–1343. 10.1007/s10295-012-1145-6.Suche in Google Scholar

Tomaszewska, L., Rakicka, M., Rymowicz, W., & Rywińska, A. (2014). A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells. FEMS Yeast Research, 14, 966–976. 10.1111/1567–1364.12184.Suche in Google Scholar

Tréton, B., Le Dall, M. T., & Heslot, H. (1978). Excretion of citric and isocitric acids by the yeast Saccharomycopsis lipolytica. European Journal of Applied Microbiology and Biotechnology, 6, 67–77. 10.1007/bf00500857.Suche in Google Scholar

Xuan, J. W., Fournier, P., Declerck, N., Chasles, M., & Gaillardin, C. (1990). Overlapping reading frames at the LYS5 locus in the yeast Yarrowia lipolytica. Molecular and Cellular Biology, 10, 4795–4806. 10.1128/mcb.10.9.4795.Suche in Google Scholar

Yang, L. B., Zhan, X. B., Zheng, Z. Y., Wu, J. R., Gao, M. J., & Lin, C. C. (2014). A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. Bioresource Technology, 151, 120–127. 10.1016/j.biortech.2013.10.031.Suche in Google Scholar

Yu, J. H., Lee, D. H., Oh, Y. J., Han, K. C., Ryu, Y. W., & Seo, J. H. (2006). Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer. Applied Biochemistry and Biotechnology, 131, 870–879. 10.1385/abab: 131:1:870.Suche in Google Scholar

Zhao, C. H., Cui, W., Liu, X. Y., Chi, Z. M., & Madzak, C. (2010). Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containing materials. Metabolic Engineering, 12, 510–517. 10.1016/j.ymben.2010.09.001.Suche in Google Scholar PubMed

Received: 2015-11-25
Revised: 2016-3-13
Accepted: 2016-3-20
Published Online: 2016-7-18
Published in Print: 2016-11-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Original Paper
  2. Fluorescence-enhanced optical sensor for detection of Al3+ in water based on functionalised nanoporous silica type SBA-15
  3. Original Paper
  4. 3′-O-(3-Chloropivaloyl)quercetin, α-glucosidase inhibitor with multi-targeted therapeutic potential in relation to diabetic complications
  5. Original Paper
  6. Production of high-content galacto-oligosaccharides mixture using β-galactosidase and Kluyveromyces marxianus entrapped in polyvinylalcohol gel
  7. Original Paper
  8. Efficient utilization of inulin and glycerol as fermentation substrates in erythritol and citric acid production using Yarrowia lipolytica expressing inulinase
  9. Original Paper
  10. Production and characterization of surfactant-stable fungal keratinase from Gibberella intermedia CA3-1 with application potential in detergent industry
  11. Original Paper
  12. Vapour-phase condensation of methyl propionate with trioxane over alumina-supported potassium catalyst
  13. Original Paper
  14. Slow pyrolysis of pre-dried sewage sludge
  15. Original Paper
  16. Synthesis, antioxidant, antibacterial, and DFT study on a coumarin based salen-type Schiff base and its copper complex
  17. Original Paper
  18. Identification of selective oxidation of TiC/SiC composite with X-ray diffraction and Raman spectroscopy
  19. Original Paper
  20. Toxicity of zinc oxide nanoparticles to the annelid Enchytraeus crypticus in agar-based exposure media
  21. Original Paper
  22. Synthesis and antibacterial evaluation of novel Schiff base derivatives containing 4(3H)-quinazolinone moiety
  23. Short Communication
  24. The aza-Pudovik reaction accelerated in external constant magnetic field
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0085/pdf
Button zum nach oben scrollen