Startseite Production and characterization of surfactant-stable fungal keratinase from Gibberella intermedia CA3-1 with application potential in detergent industry
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Production and characterization of surfactant-stable fungal keratinase from Gibberella intermedia CA3-1 with application potential in detergent industry

  • Rong-Xian Zhang , Jin-Song Gong , Wen-Fang Dou , Dan-Dan Zhang , Yu-Xia Zhang , Heng Li , Zhen-Ming Lu , Jin-Song Shi EMAIL logo und Zheng-Hong Xu EMAIL logo
Veröffentlicht/Copyright: 18. Juli 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Surfactant-stable keratinases with good properties are promising candidates for extensive applications in detergent industries. A novel fungal keratinase-producing strain, Gibberella intermedia CA3-1, is described in this study. The keratinase production medium was optimized and composed of 10 g L−1 of wool powder, 5 g L−1 of tryptone, 10 g L−1 of maltodextrin and 0.5 g L−1 of NaCl. Keratinase activity was increased up to 109 U mL−1 from 15 U mL−1 by culture optimization. The optimal reaction pH and temperature of the enzyme were 9.0 and 60°C, respectively. The keratinase activity could be improved by sodium dodecyl sulphate (SDS), and it remained stable in the presence of several surfactants and commercial detergents. G. intermedia keratinase was proved to completely remove blood stains from cotton cloth when combined with detergents. These findings indicate that this fungal keratinase is a promising catalyst for the application in detergent industry. To our knowledge, this is the first report on keratinase production by Gibberella genus.

Acknowledgements

This work was financially supported by the National High Technology Research and Program of the People's Republic of China (No. 2012AA022204C), and the Ministry of Education of the People's Republic of China (No. JUSRP51516).

References

Anbu, P., Gopinath, S. C. B., Hilda, A., Lakshmi priya, T., & Annadurai, G. (2005). Purification of keratinase from poultry farm isolate Scopulariopsis brevicaulis and statistical optimization of enzyme activity. Enzyme and Microbial Technology, 36, 639–647. 10.1016/j.enzmictec.2004.07.019.Suche in Google Scholar

Anitha, T. S., & Palanivelu, P. (2013). Purification and characterization of an extracellular keratinolytic protease from a new isolate of Aspergillus parasiticus. Protein Expression and Purification, 88, 214–220. 10.1016/j.pep.2013.01. 007.Suche in Google Scholar

Anstrup, K., & Anderson, O. (1974). U.S. Patent No. 3,827,933. Washington, D.C., USA: U.S. Patent and Trademark Office.Suche in Google Scholar

Arulmani, M., Aparanjini, K., Vasanthi, K., Arumugam, P., Arivuchelvi, M., & Kalaichelvan, P. T. (2006). Purification and partial characterization of serine protease from thermostable alkalophilic Bacillus laterosporus-AK1. World Journal of Microbiology and Biotechnology, 23, 475–481. 10.1007/s11274-006-9249-7.Suche in Google Scholar

Beg, Q. K., Sahai, V., & Gupta, R. (2003). Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochemistry, 39, 203–209. 10.1016/s0032-9592(03)00064-5.Suche in Google Scholar

Bernal, C., Cairó, J., & Coello, N. (2006). Purification and characterization of a novel exocellular keratinase from Kocuria rosea. Enzyme and Microbial Technology, 38, 49–54. 10.1016/j.enzmictec.2005.02.021.Suche in Google Scholar

Brandelli, A., Daroit, D. J., & Riffel, A. (2010). Biochemical features of microbial keratinases and their production and applications. Applied Microbiology and Biotechnology, 85, 1735–1750. 10.1007/s00253-009-2398-5.Suche in Google Scholar PubMed

Brouta, F., Descamps, F., Fett, T., Losson, B., Gerday, C., & Mignon, B. (2001). Purification and characterization of a 43.5 kDa keratinolytic metalloprotease from Microsporum canis. Medical Mycology, 39, 269–275. 10.1080/mmy.39.3.269.275.Suche in Google Scholar PubMed

Daroit, D. J., & Brandelli, A. (2014). A current assessment on the production of bacterial keratinases. Critical Reviews in Biotechnology, 34, 372–384. 10.3109/07388551.2013. 794768.Suche in Google Scholar

Deng, A. H., Wu, J., Zhang, Y., Zhang, G. Q., & Wen, T. (2010). Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp. B001. Bioresource Technology, 101, 7100–7106. 10.1016/j.biortech. 2010.03.130.Suche in Google Scholar

Fakhfakh-Zouari, N., Hmidet, N., Haddar, A., Kanoun, S., & Nasri, M. (2010). A novel serine metallokeratinase from a newly isolated Bacillus pumilus A1 grown on chicken feather meal: Biochemical and molecular characterization. Applied Biochemistry and Biotechnology, 162, 329–344. 10.1007/s12010-009-8774-x.Suche in Google Scholar PubMed

Farag, A. M., & Hassan, M. A. (2004). Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzyme and Microbial Technology, 34, 85–93. DOI: 10.1016/j.enzmictec.2003.09.002.10.1016/j.enzmictec.2003.09.002Suche in Google Scholar

Gong, J. S., Wang, Y., Zhang, D. D., Zhang, R. X., Su, C., Li, H., Zhang, X. M., Xu, Z. H., & Shi, J. S. (2015). Biochemical characterization of an extreme alkaline and surfactant-stable keratinase derived from a newly isolated actinomycete Streptomyces aureofaciens K13. RSC Advances, 5, 24691–24699. 10.1039/c4ra16423g.Suche in Google Scholar

Gradišar, H., Kern, S., & Friedrich, J. (2000). Keratinase of Doratomyces microsporus. Applied Microbiology and Biotechnology, 53, 196–200. 10.1007/s002530050008.Suche in Google Scholar PubMed

Gradišar, H., Friedrich, J., Krizaj, I., & Jerala, R. (2005). Similarities and specificities of fungal keratinolytic proteases: Comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Applied and Environmental Microbiology, 71, 3420–3426. 10.1128/aem.71.7.3420-3426.2005.Suche in Google Scholar

Gupta, R., & Ramnani, P. (2006). Microbial keratinases and their prospective applications: An overview. Applied Microbiology and Biotechnology, 70, 21–33. 10.1007/s00253-005-0239-8.Suche in Google Scholar PubMed

Gupta, R., Sharma, R., & Beg, Q. K. (2013). Revisiting microbial keratinases: Next generation proteases for sustainable biotechnology. Critical Reviews in Biotechnology, 33, 216–228. 10.3109/07388551.2012.685051.Suche in Google Scholar PubMed

Ismail, A. M. S., Housseiny, M. M., Abo-Elmagd, H. I., El-Sayed, N. H., & Habib, M. (2012). Novel keratinase from Trichoderma harzianum MH-20 exhibiting remarkable dehairing capabilities. International Biodeterioration & Biodegradation, 70, 14–19. 10.1016/j.ibiod.2011.10.013.Suche in Google Scholar

Itsune, O., Isao, M., Keizo, H., Naoya, I., Mayumi, H., & Hisami, M. (2002). Japan Patent No. 2,002,256,294. Tokyo, Japan: Japan Patent Office.Suche in Google Scholar

Jaouadi, B., Ellouz-Chaabouni, S., Rhimi, M., & Bejar, S. (2008). Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie, 90, 1291–1305. 10.1016/j.biochi.2008.03.004.Suche in Google Scholar PubMed

Liu, B. H., Zhang, J., Fang, Z., Gu, L., Liao, X. G., Du, G. C., & Chen, J. (2013). Enhanced thermostability of keratinase by computational design and empirical mutation. Journal of Industrial Microbiology & Biotechnology, 40, 697–704. 10.1007/s10295-013-1268-4.Suche in Google Scholar PubMed

Moreira-Gasparin, F. G., de Souza, C. G. M., Costa, A. M., Alexandrino, A. M., Bracht, C. K., Boer, C. G., & Peralta, R. M. (2009). Purification and characterization of an efficient poultry feather degrading-protease from Myrothecium verrucaria. Biodegradation, 20, 727–736. 10.1007/s10532-009-9260-4.Suche in Google Scholar PubMed

Paul, T., Das, A., Mandal, A., Halder, S. K., Das Mohpatra, P. K., Pati, B. R., & Mondal, K. C. (2013). Biochemical and structural characterization of a detergent stable alkaline serine keratinase from Paenibacillus Woosongensis TKB2: A potential additive for laundry detergent. Waste and Biomass Valorization, 5, 563–574. 10.1007/s12649-013-9265-4.Suche in Google Scholar

Paul, T., Das, A., Mandal, A., Halder, S. K., Jana, A., Maity, C., Das Mohpatra, P. K., Pati, B. R., & Mondal, K. C. (2014). An efficient cloth cleaning properties of a crude keratinase combined with detergent: Towards industrial viewpoint. Journal of Cleaner Production, 66, 672–684. 10.1016/j.jclepro.2013.10.054Suche in Google Scholar

Paul, T., Jana, A., Mandal, A. K., Mandal, A., Das Mohpatra, P. K., & Mondal, K. C. (2016). Bacterial keratinolytic protease, imminent starter for NextGen leather and detergent industries. Sustainable Chemistry and Pharmacy, 3, 8–22. 10.1016/j.scp.2016.01.001.Suche in Google Scholar

Pillai, P., & Archana, G. (2008). Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate. Applied Microbiology and Biotechnology, 78, 643–650. 10.1007/s00253-008-1355-z.Suche in Google Scholar PubMed

Röhm, O. (1913). German Patent No. 283,923. München, Germany: German Patent and Trade Mark OfficeSuche in Google Scholar

Rai, S. K., Konwarh, R., & Mukherjee, A. K. (2009). Purification, characterization and biotechnological application of an alkaline β-keratinase produced by Bacillus subtilis RM-01 in solid-state fermentation using chicken-feather as substrate. Biochemical Engineering Journal, 45, 218–225. 10.1016/j.bej.2009.04.001Suche in Google Scholar

Rajput, R., Sharma, R., & Gupta, R. (2010). Biochemical characterization of a thiol-activated, oxidation stable keratinase from Bacillus pumilus KS12. Enzyme Research, 2010, 132148. 10.4061/2010/132148.Suche in Google Scholar PubMed PubMed Central

Ramesh, S., Rajesh, M., & Mathivanan, N. (2009). Characterization of a thermostable alkaline protease produced by marine Streptomyces fungicidicus MML1614. Bioprocess Biosystems Engineering, 32, 791–800. 10.1007/s00449-009-0305-1.Suche in Google Scholar PubMed

Riffel, A., & Brandelli, A. (2002). Isolation and characterization of a feather-degrading bacterium from the poultry processing industry. Journal of Industrial Microbiology Biotechnology, 29, 255–258. 10.1038/sj.jim.7000307.Suche in Google Scholar PubMed

Santos, R. M. D. B., Firmino, A. A. P., de Sá, C. M., & Felix, C. R. (1996). Keratinolytic activity of Aspergillus fumigatus Fresenius. Current Microbiology, 33, 364–370. 10.1007/s002849900129.Suche in Google Scholar PubMed

Singh, S. K., Singh, S. K., Tripathi, V. R., & Garg, S. K. (2012). Purification, characterization and secondary structure elucidation of a detergent stable, halotolerant, thermoalkaline protease from Bacillus cereus SIU1. Process Biochemistry, 47, 1479–1487. 10.1016/j.procbio.2012.05.021.Suche in Google Scholar

Subba Rao, C., Sathish, T., Ravichandra, P., & Prakasham, R. S. (2009). Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochemistry, 44, 262–268. 10.1016/j.procbio.2008.10.022.Suche in Google Scholar

Tiwary, E., & Gupta, R. (2010). Medium optimization for a novel 58 kDa dimeric keratinase from Bacillus licheniformis ER-15: Biochemical characterization and application in feather degradation and dehairing of hides. Bioresource Technology, 101, 6103–6110. 10.1016/j.biortech.2010. 02.090Suche in Google Scholar

Tork, S. E., Shahein, Y. E., El-Hakim, A. E., Abdel-Aty, A. M., & Aly, M. M. (2013). Production and characterization of thermostable metallo-keratinase from newly isolated Bacillus subtilis NRC 3. International Journal of Biological Macromolecules, 55, 169–175. 10.1016/j.ijbiomac.2013.01.002.Suche in Google Scholar PubMed

Wu, Y., Gong, J. S., Lu, Z. M., Li, H., Zhu, X. Y., Li, H., Shi, J. S., & Xu, Z. H. (2013). Isolation and characterization of Gibberella intermedia CA3-1, a novel and versatile nitrilase-producing fungus. Journal of Basic Microbiology, 53, 934–941. 10.1002/jobm.201200143.Suche in Google Scholar PubMed

Received: 2015-12-28
Revised: 2016-3-7
Accepted: 2016-3-23
Published Online: 2016-7-18
Published in Print: 2016-11-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Original Paper
  2. Fluorescence-enhanced optical sensor for detection of Al3+ in water based on functionalised nanoporous silica type SBA-15
  3. Original Paper
  4. 3′-O-(3-Chloropivaloyl)quercetin, α-glucosidase inhibitor with multi-targeted therapeutic potential in relation to diabetic complications
  5. Original Paper
  6. Production of high-content galacto-oligosaccharides mixture using β-galactosidase and Kluyveromyces marxianus entrapped in polyvinylalcohol gel
  7. Original Paper
  8. Efficient utilization of inulin and glycerol as fermentation substrates in erythritol and citric acid production using Yarrowia lipolytica expressing inulinase
  9. Original Paper
  10. Production and characterization of surfactant-stable fungal keratinase from Gibberella intermedia CA3-1 with application potential in detergent industry
  11. Original Paper
  12. Vapour-phase condensation of methyl propionate with trioxane over alumina-supported potassium catalyst
  13. Original Paper
  14. Slow pyrolysis of pre-dried sewage sludge
  15. Original Paper
  16. Synthesis, antioxidant, antibacterial, and DFT study on a coumarin based salen-type Schiff base and its copper complex
  17. Original Paper
  18. Identification of selective oxidation of TiC/SiC composite with X-ray diffraction and Raman spectroscopy
  19. Original Paper
  20. Toxicity of zinc oxide nanoparticles to the annelid Enchytraeus crypticus in agar-based exposure media
  21. Original Paper
  22. Synthesis and antibacterial evaluation of novel Schiff base derivatives containing 4(3H)-quinazolinone moiety
  23. Short Communication
  24. The aza-Pudovik reaction accelerated in external constant magnetic field
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0086/html
Button zum nach oben scrollen