Abstract
This study focuses on the use of slow pyrolysis with controlled temperature increase for the thermal decomposition of pre-dried wastewater sludge. A combination of two significantly different methods was applied to investigate the pyrolysis process. The first of the experimental approaches was based on laboratory apparatus with a vertical batch retort equipped with external electrical heating. Samples of the liquid and gaseous products of the pyrolysis were taken at defined intervals throughout the pyrolysis process and were subsequently analysed. The second method involved the application of thermal analysis to the identical sludge, completed by online analysis of the pyrolysis products generated. This second method included thermogravimetry (TG), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). The results obtained by both methods demonstrate that waste water sludge can be effectively converted into pyrolysis gas and oil with good combustion properties.
References
Andersson, A., & Nilsson, K. O. (1972). Enrichment of trace elements from sewage sludge fertilizer in soils and plants. Ambio, 1, 176–179.Suche in Google Scholar
Appels, L., Baeyens, J., Degreve, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34, 755–781. 10.1016/j.pecs.2008.06.002.Suche in Google Scholar
Arena, U. (2012). Process and technological aspects of municipal solid waste gasification. A review. Waste Management, 32, 625–639. 10.1016/j.wasman.2011.09.025.Suche in Google Scholar PubMed
Bansal, P. (2005). Evolving sustainably: a longitudinal study of corporate sustainable development. Strategic Management Journal, 26, 197–218. 10.1002/smj.441.Suche in Google Scholar
Becidan, M., Skreiberg, Ø., & Hustad, J. E. (2007). Products distribution and gas release in pyrolysis of thermally thick biomass residues samples. Journal of Analytical and Applied Pyrolysis, 78, 207–213. 10.1016/j.jaap.2006.07.002Suche in Google Scholar
Beneroso, D., Bermúdez, J. M., Arenillas, A., & Menéndez, J. A. (2015). Comparing the composition of the synthesis-gas obtained from the pyrolysis of different organic residues for a potential use in the synthesis of bioplastics. Journal of Analytical and Applied Pyrolysis, 111, 55–63. 10.1016/j.jaap.2014.12.011.Suche in Google Scholar
Berrueco, C., Esperanza, E., Mastral, F. J., Ceamanos, J., & García-Bacaicoa, P. (2005). Pyrolysis of waste tyres in an atmospheric static-bed batch reactor: Analysis of the gases obtained. Journal of Analytical and Applied Pyrolysis, 74, 245–253. 10.1016/j.jaap.2004.10.007.Suche in Google Scholar
Brebu, M., & Vasile, C. (2010). Thermal degradation of lignin – a review. Cellulose Chemistry and Technology, 44, 353–363.Suche in Google Scholar
Cai, Q. Y., Mo, C. H., Wu, Q. T., Zeng, Q. Y., & Katsoyiannis, A. (2007). Concentration and speciation of heavy metals in six different sewage sludge-composts. Journal of Hazardous Materials, 147, 1063–1072. 10.1016/j.jhazmat.2007.01.142.Suche in Google Scholar PubMed
Casal, M. D., Canga, C. S., Díez, M. A., Alvarez, R., & Barriocanal, C. (2005). Low-temperature pyrolysis of coals with different coking pressure characteristics. Journal of Analytical and Applied Pyrolysis, 74, 96–103. 10.1016/j.jaap.2004.10.012.Suche in Google Scholar
Chen, D. Y., Zhou, J. B., & Zhang, Q. S. (2014). Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo. Bioresource Technology, 169, 313–319. 10.1016/j.biortech.2014.07.009.Suche in Google Scholar PubMed
Demirbas, A. (2004). Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons. Journal of Analytical and Applied Pyrolysis, 72, 97–102. 10.1016/j.jaap.2004.03.001.Suche in Google Scholar
Deshmukh, Y. V. (2005). Industrial heating: Principles, techniques, materials, applications, and design. London, UK: CRC Press.10.1201/9781420027556Suche in Google Scholar
Dorez, G., Ferry, L., Sonnier, R., Taguet, A., & Lopez-Cuesta, J. M. (2014). Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. Journal of Analytical and Applied Pyrolysis, 107, 323–331. 10.1016/j.jaap.2014.03.017.Suche in Google Scholar
Ekama, G. A., Sötemann, S. W., & Wentzel, M. C. (2007). Biodegradability of activated sludge organics under anaerobic conditions. Water Research, 41, 244–252. 10.1016/j.watres.2006.08.014.Suche in Google Scholar
Fagernäs, L., Kuoppala, E., Tiilikkala, K., & Oasmaa, A. (2012). Chemical composition of birch wood slow pyrolysis products. Energy & Fuels, 26, 1275–1283. 10.1021/ef2018836.Suche in Google Scholar
Folgueras, M. B., Díaz, R. M., Xiberta, J., & Prieto, I. (2003). Thermogravimetric analysis of the co-combustion of coal and sewage sludge. Fuel, 82, 2051–2055. 10.1016/s00162361(03)00161–3.Suche in Google Scholar
Fytili, D., & Zabaniotou, A. (2008). Utilization of sewage sludge in EU application of old and new methods—A review. Renewable and Sustainable Energy Reviews, 12, 116–140. 10.1016/j.rser.2006.05.014.Suche in Google Scholar
Franco, C., Pinto, F., Gulyurtlu, I., & Cabrita, I. (2003). The study of reactions influencing the biomass steam gasification process. Fuel, 82, 835–842. 10.1016/s00162361(02)00313–7.Suche in Google Scholar
Guerrero, M., Ruiz, M. P., Alzueta, M. U., Bilbao, R., & Millera, A. (2005). Pyrolysis of eucalyptus at different heating rates: studies of char characterization and oxidative reactivity. Journal of Analytical and Applied Pyrolysis, 74, 307–314. 10.1016/j.jaap.2004.12.008.Suche in Google Scholar
Haydary, J., Jelemenský, L'., Markoš, J., & Annus, J. (2009). A laboratory set-up with a flow reactor for waste tire pyrolysis. KGK – Kautschuk, Gummi, Kunststoffe, 62, 661–665.Suche in Google Scholar
Honus, S., Juchelkova, D., Campen, A., & Wiltowski, T. (2014). Gaseous components from pyrolysis—Characteristics, production and potential for energy utilization. Journal of Analytical and Applied Pyrolysis, 106, 1–8. 10.1016/j.jaap.2013.11.023.Suche in Google Scholar
Ingram, L., Mohan, D., Bricka, M., Steele, P., Strobel, D., Crocker, D., Mitchell, B., Mohammad, J., Cantrell, K., & Pittman, C. U., Jr. (2008). Pyrolysis of wood and bark in an Auger reactor: Physical properties and chemical analysis of the produced bio-oils. Energy & Fuels, 22, 614–625. 10.1021/ef700335k.Suche in Google Scholar
Islam, M. N., Islam, M. N., & Beg, M. R. A. (2004). The fuel properties of pyrolysis liquid derived from urban solid wastes in Bangladesh. Bioresource Technology, 92, 181–186. 10.1016/j.biortech.2003.08.009.Suche in Google Scholar
Kanczarek, A. (1992). Abfallverwertung mit dem Schwel-BrennVerfahren. Energieanwendung, 41, 514–517. (in German)Suche in Google Scholar
Karayildirim, T., Yanik, J., Yuksel, M., & Bockhorn, H. (2006). Characterisation of products from pyrolysis of waste sludges. Fuel, 85, 1498–1508. 10.1016/j.fuel.2005.12.002.Suche in Google Scholar
Kelessidis, A., & Stasinakis, A. S. (2012). Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Management, 32, 1186–1195. 10.1016/j.wasman.2012.01.012.Suche in Google Scholar
Lewandowski, M., & Milchert, E. (2011). Modern technology of dry distillation of wood. Chemik, 65, 1301–1306.Suche in Google Scholar
Li, A. M., Li, X. D., Li, S. Q., Ren, Y., Shang, N., Chi, Y., Yan, J. H., & Cen, K. F. (1999). Experimental studies on municipal solid waste pyrolysis in a laboratory-scale rotary kiln. Energy, 24, 209–218. 10.1016/s0360-5442(98)00095-4.Suche in Google Scholar
Liu, Q. A., Wang, S. R., Zheng, Y., Luo, Z. Y., & Cen, K. F. (2008) . Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 82, 170–177. DOI: 10.1016/j.jaap.2008.03.007.10.1016/j.jaap.2008.03.007Suche in Google Scholar
López, G., Olazar, M., Aguado, R., & Bilbao, J. (2010). Continuous pyrolysis of waste tyres in a conical spouted bed reactor. Fuel, 89, 1946–1952. 10.1016/j.fuel.2010.03.029.Suche in Google Scholar
Martínez, J. D., Puy, N., Murillo, R., García, T., Navarro, M. V., & Mastral, A. M. (2013). Waste tyre pyrolysis – A review. Renewable and Sustainable Energy Reviews, 23, 179–213. 10.1016/j.rser.2013.02.038.Suche in Google Scholar
Murakami, T., Suzuki, Y., Nagasawa, H., Yamamoto, T., Koseki, T., Hirose, H., & Okamoto, S. (2009). Combustion characteristics of sewage sludge in an incineration plant for energy recovery. Fuel Processing Technology, 90, 778–783. 10.1016/j.fuproc.2009.03.003.Suche in Google Scholar
Onay, O. (2007). Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Processing Technology, 88, 523–531. 10.1016/j.fuproc.2007.01.001.Suche in Google Scholar
Oyedun, A. O., Gebreegziabher, T., & Hui, C. W. (2013). Mechanism and modelling of bamboo pyrolysis. Fuel Processing Technology, 106, 595–604. 10.1016/j.fuproc.2012.09.031.Suche in Google Scholar
Pöschl, M., Ward, S., & Owende, P. (2010). Evaluation of energy efficiency of various biogas production and utilization pathways. Applied Energy, 87, 3305–3321. 10.1016/j.apenergy.2010.05.011.Suche in Google Scholar
Rodriguez-Navarro, C., Ruiz-Agudo, E., Luque, A., Rodriguez-Navarro, A. B., & Ortega-Huertas, M. (2009). Thermal decomposition of calcite: Mechanisms of formation and textural evolution of CaO nanocrystals. American Mineralogist, 94, 578–593. 10.2138/am.2009.3021.Suche in Google Scholar
Romdhana, M. H., Lecomte, D., Ladevie, B., & Sablayrolles, C. (2009). Monitoring of pathogenic microorganisms contamination during heat drying process of sewage sludge. Process Safety and Environmental Protection, 87, 377–386. 10.1016/j.psep.2009.08.003.Suche in Google Scholar
Salema, A. A., Afzal, M. T., & Motasemi, F. (2014). Is there synergy between carbonaceous material and biomass during conventional pyrolysis? A TG-FTIR approach. Journal of Analytical and Applied Pyrolysis, 105, 217–226. 10.1016/j.jaap.2013.11.007.Suche in Google Scholar
Sanders, J. P., & Gallagher, P. K. (2002). Kinetic analyses using simultaneous TG/DSC measurements: Part I: decomposition of calcium carbonate in argon. Thermochimica Acta, 388, 115–128. 10.1016/s0040-6031(02)00032-1.Suche in Google Scholar
Sharma, V. K., Fortuna, F., Mincarini, M., Berillo, M., & Cornacchia, G. (2000). Disposal of waste tyres for energy recovery and safe environment. Applied Energy, 65, 381–394. 10.1016/s0306-2619(99)00085-9.Suche in Google Scholar
Scholz, R., Beckmann, M., & Schulenburg, F. (2001). Abfallbehandlung in thermischen Verfahren: Verbrennung, Vergasung, Pyrolyse, Verfahrens- und Anlagenkonzept. Stuttgart, Germany: B. G. Teubner. 10.1007/978-3-322-90854-4. (in German)Suche in Google Scholar
Singh, S., Wu, C. F., & Williams, P. T. (2012). Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques. Journal of Analytical and Applied Pyrolysis, 94, 99–107. 10.1016/j.jaap.2011.11.011.Suche in Google Scholar
Sofer, S. S., & Zaborsky, O. R. (Eds.) (1981). Biomass conversion processes for energy and fuels (1st ed.). New York, NY, USA: Plenum Press10.1007/978-1-4757-0301-6Suche in Google Scholar
Sørum, L., Grønli, M. G., & Hustad, J. E. (2001). Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel, 80, 1217–1227. 10.1016/s0016-2361(00)00218-0.Suche in Google Scholar
van Lier, J. B., Tilche, A., Ahring, B. K., Macarie, H., Moletta, R., Dohanyos, M., Hulshoff Pol, L. W., Lens, P., & Verstraete, W. (2001). New perspectives in anaerobic digestion. Water Science & Technology, 43(1), 1–18.10.2166/wst.2001.0001Suche in Google Scholar
Wang, X. Q., Morrison, W., Du, Z. Y., Wan, Y. Q., Lin, X. Y., Chen, P., & Ruan, R. (2012). Biomass temperature profile development and its implications under the microwave-assisted pyrolysis condition. Applied Energy, 99, 386–392. 10.1016/j.apenergy.2012.05.031.Suche in Google Scholar
Weber, R., & Sakurai, T. (2001). Formation characteristics of PCDD and PCDF during pyrolysis processes. Chemosphere, 45, 1111–1117. 10.1016/s0045-6535(01)00053-4.Suche in Google Scholar
Wenning, H. P. (1993). The VEBA OEL Technologie pyrolysis process. Journal of Analytical and Applied Pyrolysis, 25, 301–310. 10.1016/0165-2370(93)80049-6.Suche in Google Scholar
Xu, Y., Zhang, Y. F., Wang, Y., Zhang, G. J., & Chen, L. (2013). Gas evolution characteristics of lignite during low temperature pyrolysis. Journal of Analytical and Applied Pyrolysis, 104, 625–631. 10.1016/j.jaap.2013.05.004.Suche in Google Scholar
Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 45, 651–671. 10.1016/s0196-8904(03)00177-8.Suche in Google Scholar
Zhou, C. G., Zhang, Q. L., Arnold, L., Yang, W. H., & Blasiak, W. (2013). A study of the pyrolysis behaviors of pelletized recovered municipal solid waste fuels. Applied Energy, 107, 173–182. 10.1016/j.apenergy.2013.02.029.Suche in Google Scholar
© 2016 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Original Paper
- Fluorescence-enhanced optical sensor for detection of Al3+ in water based on functionalised nanoporous silica type SBA-15
- Original Paper
- 3′-O-(3-Chloropivaloyl)quercetin, α-glucosidase inhibitor with multi-targeted therapeutic potential in relation to diabetic complications
- Original Paper
- Production of high-content galacto-oligosaccharides mixture using β-galactosidase and Kluyveromyces marxianus entrapped in polyvinylalcohol gel
- Original Paper
- Efficient utilization of inulin and glycerol as fermentation substrates in erythritol and citric acid production using Yarrowia lipolytica expressing inulinase
- Original Paper
- Production and characterization of surfactant-stable fungal keratinase from Gibberella intermedia CA3-1 with application potential in detergent industry
- Original Paper
- Vapour-phase condensation of methyl propionate with trioxane over alumina-supported potassium catalyst
- Original Paper
- Slow pyrolysis of pre-dried sewage sludge
- Original Paper
- Synthesis, antioxidant, antibacterial, and DFT study on a coumarin based salen-type Schiff base and its copper complex
- Original Paper
- Identification of selective oxidation of TiC/SiC composite with X-ray diffraction and Raman spectroscopy
- Original Paper
- Toxicity of zinc oxide nanoparticles to the annelid Enchytraeus crypticus in agar-based exposure media
- Original Paper
- Synthesis and antibacterial evaluation of novel Schiff base derivatives containing 4(3H)-quinazolinone moiety
- Short Communication
- The aza-Pudovik reaction accelerated in external constant magnetic field
Artikel in diesem Heft
- Original Paper
- Fluorescence-enhanced optical sensor for detection of Al3+ in water based on functionalised nanoporous silica type SBA-15
- Original Paper
- 3′-O-(3-Chloropivaloyl)quercetin, α-glucosidase inhibitor with multi-targeted therapeutic potential in relation to diabetic complications
- Original Paper
- Production of high-content galacto-oligosaccharides mixture using β-galactosidase and Kluyveromyces marxianus entrapped in polyvinylalcohol gel
- Original Paper
- Efficient utilization of inulin and glycerol as fermentation substrates in erythritol and citric acid production using Yarrowia lipolytica expressing inulinase
- Original Paper
- Production and characterization of surfactant-stable fungal keratinase from Gibberella intermedia CA3-1 with application potential in detergent industry
- Original Paper
- Vapour-phase condensation of methyl propionate with trioxane over alumina-supported potassium catalyst
- Original Paper
- Slow pyrolysis of pre-dried sewage sludge
- Original Paper
- Synthesis, antioxidant, antibacterial, and DFT study on a coumarin based salen-type Schiff base and its copper complex
- Original Paper
- Identification of selective oxidation of TiC/SiC composite with X-ray diffraction and Raman spectroscopy
- Original Paper
- Toxicity of zinc oxide nanoparticles to the annelid Enchytraeus crypticus in agar-based exposure media
- Original Paper
- Synthesis and antibacterial evaluation of novel Schiff base derivatives containing 4(3H)-quinazolinone moiety
- Short Communication
- The aza-Pudovik reaction accelerated in external constant magnetic field