Home Slow pyrolysis of pre-dried sewage sludge
Article
Licensed
Unlicensed Requires Authentication

Slow pyrolysis of pre-dried sewage sludge

  • Marek Staf EMAIL logo and Petr Buryan
Published/Copyright: July 19, 2016
Become an author with De Gruyter Brill

Abstract

This study focuses on the use of slow pyrolysis with controlled temperature increase for the thermal decomposition of pre-dried wastewater sludge. A combination of two significantly different methods was applied to investigate the pyrolysis process. The first of the experimental approaches was based on laboratory apparatus with a vertical batch retort equipped with external electrical heating. Samples of the liquid and gaseous products of the pyrolysis were taken at defined intervals throughout the pyrolysis process and were subsequently analysed. The second method involved the application of thermal analysis to the identical sludge, completed by online analysis of the pyrolysis products generated. This second method included thermogravimetry (TG), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). The results obtained by both methods demonstrate that waste water sludge can be effectively converted into pyrolysis gas and oil with good combustion properties.

References

Andersson, A., & Nilsson, K. O. (1972). Enrichment of trace elements from sewage sludge fertilizer in soils and plants. Ambio, 1, 176–179.Search in Google Scholar

Appels, L., Baeyens, J., Degreve, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34, 755–781. 10.1016/j.pecs.2008.06.002.Search in Google Scholar

Arena, U. (2012). Process and technological aspects of municipal solid waste gasification. A review. Waste Management, 32, 625–639. 10.1016/j.wasman.2011.09.025.Search in Google Scholar PubMed

Bansal, P. (2005). Evolving sustainably: a longitudinal study of corporate sustainable development. Strategic Management Journal, 26, 197–218. 10.1002/smj.441.Search in Google Scholar

Becidan, M., Skreiberg, Ø., & Hustad, J. E. (2007). Products distribution and gas release in pyrolysis of thermally thick biomass residues samples. Journal of Analytical and Applied Pyrolysis, 78, 207–213. 10.1016/j.jaap.2006.07.002Search in Google Scholar

Beneroso, D., Bermúdez, J. M., Arenillas, A., & Menéndez, J. A. (2015). Comparing the composition of the synthesis-gas obtained from the pyrolysis of different organic residues for a potential use in the synthesis of bioplastics. Journal of Analytical and Applied Pyrolysis, 111, 55–63. 10.1016/j.jaap.2014.12.011.Search in Google Scholar

Berrueco, C., Esperanza, E., Mastral, F. J., Ceamanos, J., & García-Bacaicoa, P. (2005). Pyrolysis of waste tyres in an atmospheric static-bed batch reactor: Analysis of the gases obtained. Journal of Analytical and Applied Pyrolysis, 74, 245–253. 10.1016/j.jaap.2004.10.007.Search in Google Scholar

Brebu, M., & Vasile, C. (2010). Thermal degradation of lignin – a review. Cellulose Chemistry and Technology, 44, 353–363.Search in Google Scholar

Cai, Q. Y., Mo, C. H., Wu, Q. T., Zeng, Q. Y., & Katsoyiannis, A. (2007). Concentration and speciation of heavy metals in six different sewage sludge-composts. Journal of Hazardous Materials, 147, 1063–1072. 10.1016/j.jhazmat.2007.01.142.Search in Google Scholar PubMed

Casal, M. D., Canga, C. S., Díez, M. A., Alvarez, R., & Barriocanal, C. (2005). Low-temperature pyrolysis of coals with different coking pressure characteristics. Journal of Analytical and Applied Pyrolysis, 74, 96–103. 10.1016/j.jaap.2004.10.012.Search in Google Scholar

Chen, D. Y., Zhou, J. B., & Zhang, Q. S. (2014). Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo. Bioresource Technology, 169, 313–319. 10.1016/j.biortech.2014.07.009.Search in Google Scholar PubMed

Demirbas, A. (2004). Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons. Journal of Analytical and Applied Pyrolysis, 72, 97–102. 10.1016/j.jaap.2004.03.001.Search in Google Scholar

Deshmukh, Y. V. (2005). Industrial heating: Principles, techniques, materials, applications, and design. London, UK: CRC Press.10.1201/9781420027556Search in Google Scholar

Dorez, G., Ferry, L., Sonnier, R., Taguet, A., & Lopez-Cuesta, J. M. (2014). Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. Journal of Analytical and Applied Pyrolysis, 107, 323–331. 10.1016/j.jaap.2014.03.017.Search in Google Scholar

Ekama, G. A., Sötemann, S. W., & Wentzel, M. C. (2007). Biodegradability of activated sludge organics under anaerobic conditions. Water Research, 41, 244–252. 10.1016/j.watres.2006.08.014.Search in Google Scholar

Fagernäs, L., Kuoppala, E., Tiilikkala, K., & Oasmaa, A. (2012). Chemical composition of birch wood slow pyrolysis products. Energy & Fuels, 26, 1275–1283. 10.1021/ef2018836.Search in Google Scholar

Folgueras, M. B., Díaz, R. M., Xiberta, J., & Prieto, I. (2003). Thermogravimetric analysis of the co-combustion of coal and sewage sludge. Fuel, 82, 2051–2055. 10.1016/s00162361(03)00161–3.Search in Google Scholar

Fytili, D., & Zabaniotou, A. (2008). Utilization of sewage sludge in EU application of old and new methods—A review. Renewable and Sustainable Energy Reviews, 12, 116–140. 10.1016/j.rser.2006.05.014.Search in Google Scholar

Franco, C., Pinto, F., Gulyurtlu, I., & Cabrita, I. (2003). The study of reactions influencing the biomass steam gasification process. Fuel, 82, 835–842. 10.1016/s00162361(02)00313–7.Search in Google Scholar

Guerrero, M., Ruiz, M. P., Alzueta, M. U., Bilbao, R., & Millera, A. (2005). Pyrolysis of eucalyptus at different heating rates: studies of char characterization and oxidative reactivity. Journal of Analytical and Applied Pyrolysis, 74, 307–314. 10.1016/j.jaap.2004.12.008.Search in Google Scholar

Haydary, J., Jelemenský, L'., Markoš, J., & Annus, J. (2009). A laboratory set-up with a flow reactor for waste tire pyrolysis. KGK – Kautschuk, Gummi, Kunststoffe, 62, 661–665.Search in Google Scholar

Honus, S., Juchelkova, D., Campen, A., & Wiltowski, T. (2014). Gaseous components from pyrolysis—Characteristics, production and potential for energy utilization. Journal of Analytical and Applied Pyrolysis, 106, 1–8. 10.1016/j.jaap.2013.11.023.Search in Google Scholar

Ingram, L., Mohan, D., Bricka, M., Steele, P., Strobel, D., Crocker, D., Mitchell, B., Mohammad, J., Cantrell, K., & Pittman, C. U., Jr. (2008). Pyrolysis of wood and bark in an Auger reactor: Physical properties and chemical analysis of the produced bio-oils. Energy & Fuels, 22, 614–625. 10.1021/ef700335k.Search in Google Scholar

Islam, M. N., Islam, M. N., & Beg, M. R. A. (2004). The fuel properties of pyrolysis liquid derived from urban solid wastes in Bangladesh. Bioresource Technology, 92, 181–186. 10.1016/j.biortech.2003.08.009.Search in Google Scholar

Kanczarek, A. (1992). Abfallverwertung mit dem Schwel-BrennVerfahren. Energieanwendung, 41, 514–517. (in German)Search in Google Scholar

Karayildirim, T., Yanik, J., Yuksel, M., & Bockhorn, H. (2006). Characterisation of products from pyrolysis of waste sludges. Fuel, 85, 1498–1508. 10.1016/j.fuel.2005.12.002.Search in Google Scholar

Kelessidis, A., & Stasinakis, A. S. (2012). Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Management, 32, 1186–1195. 10.1016/j.wasman.2012.01.012.Search in Google Scholar

Lewandowski, M., & Milchert, E. (2011). Modern technology of dry distillation of wood. Chemik, 65, 1301–1306.Search in Google Scholar

Li, A. M., Li, X. D., Li, S. Q., Ren, Y., Shang, N., Chi, Y., Yan, J. H., & Cen, K. F. (1999). Experimental studies on municipal solid waste pyrolysis in a laboratory-scale rotary kiln. Energy, 24, 209–218. 10.1016/s0360-5442(98)00095-4.Search in Google Scholar

Liu, Q. A., Wang, S. R., Zheng, Y., Luo, Z. Y., & Cen, K. F. (2008) . Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 82, 170–177. DOI: 10.1016/j.jaap.2008.03.007.10.1016/j.jaap.2008.03.007Search in Google Scholar

López, G., Olazar, M., Aguado, R., & Bilbao, J. (2010). Continuous pyrolysis of waste tyres in a conical spouted bed reactor. Fuel, 89, 1946–1952. 10.1016/j.fuel.2010.03.029.Search in Google Scholar

Martínez, J. D., Puy, N., Murillo, R., García, T., Navarro, M. V., & Mastral, A. M. (2013). Waste tyre pyrolysis – A review. Renewable and Sustainable Energy Reviews, 23, 179–213. 10.1016/j.rser.2013.02.038.Search in Google Scholar

Murakami, T., Suzuki, Y., Nagasawa, H., Yamamoto, T., Koseki, T., Hirose, H., & Okamoto, S. (2009). Combustion characteristics of sewage sludge in an incineration plant for energy recovery. Fuel Processing Technology, 90, 778–783. 10.1016/j.fuproc.2009.03.003.Search in Google Scholar

Onay, O. (2007). Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Processing Technology, 88, 523–531. 10.1016/j.fuproc.2007.01.001.Search in Google Scholar

Oyedun, A. O., Gebreegziabher, T., & Hui, C. W. (2013). Mechanism and modelling of bamboo pyrolysis. Fuel Processing Technology, 106, 595–604. 10.1016/j.fuproc.2012.09.031.Search in Google Scholar

Pöschl, M., Ward, S., & Owende, P. (2010). Evaluation of energy efficiency of various biogas production and utilization pathways. Applied Energy, 87, 3305–3321. 10.1016/j.apenergy.2010.05.011.Search in Google Scholar

Rodriguez-Navarro, C., Ruiz-Agudo, E., Luque, A., Rodriguez-Navarro, A. B., & Ortega-Huertas, M. (2009). Thermal decomposition of calcite: Mechanisms of formation and textural evolution of CaO nanocrystals. American Mineralogist, 94, 578–593. 10.2138/am.2009.3021.Search in Google Scholar

Romdhana, M. H., Lecomte, D., Ladevie, B., & Sablayrolles, C. (2009). Monitoring of pathogenic microorganisms contamination during heat drying process of sewage sludge. Process Safety and Environmental Protection, 87, 377–386. 10.1016/j.psep.2009.08.003.Search in Google Scholar

Salema, A. A., Afzal, M. T., & Motasemi, F. (2014). Is there synergy between carbonaceous material and biomass during conventional pyrolysis? A TG-FTIR approach. Journal of Analytical and Applied Pyrolysis, 105, 217–226. 10.1016/j.jaap.2013.11.007.Search in Google Scholar

Sanders, J. P., & Gallagher, P. K. (2002). Kinetic analyses using simultaneous TG/DSC measurements: Part I: decomposition of calcium carbonate in argon. Thermochimica Acta, 388, 115–128. 10.1016/s0040-6031(02)00032-1.Search in Google Scholar

Sharma, V. K., Fortuna, F., Mincarini, M., Berillo, M., & Cornacchia, G. (2000). Disposal of waste tyres for energy recovery and safe environment. Applied Energy, 65, 381–394. 10.1016/s0306-2619(99)00085-9.Search in Google Scholar

Scholz, R., Beckmann, M., & Schulenburg, F. (2001). Abfallbehandlung in thermischen Verfahren: Verbrennung, Vergasung, Pyrolyse, Verfahrens- und Anlagenkonzept. Stuttgart, Germany: B. G. Teubner. 10.1007/978-3-322-90854-4. (in German)Search in Google Scholar

Singh, S., Wu, C. F., & Williams, P. T. (2012). Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques. Journal of Analytical and Applied Pyrolysis, 94, 99–107. 10.1016/j.jaap.2011.11.011.Search in Google Scholar

Sofer, S. S., & Zaborsky, O. R. (Eds.) (1981). Biomass conversion processes for energy and fuels (1st ed.). New York, NY, USA: Plenum Press10.1007/978-1-4757-0301-6Search in Google Scholar

Sørum, L., Grønli, M. G., & Hustad, J. E. (2001). Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel, 80, 1217–1227. 10.1016/s0016-2361(00)00218-0.Search in Google Scholar

van Lier, J. B., Tilche, A., Ahring, B. K., Macarie, H., Moletta, R., Dohanyos, M., Hulshoff Pol, L. W., Lens, P., & Verstraete, W. (2001). New perspectives in anaerobic digestion. Water Science & Technology, 43(1), 1–18.10.2166/wst.2001.0001Search in Google Scholar

Wang, X. Q., Morrison, W., Du, Z. Y., Wan, Y. Q., Lin, X. Y., Chen, P., & Ruan, R. (2012). Biomass temperature profile development and its implications under the microwave-assisted pyrolysis condition. Applied Energy, 99, 386–392. 10.1016/j.apenergy.2012.05.031.Search in Google Scholar

Weber, R., & Sakurai, T. (2001). Formation characteristics of PCDD and PCDF during pyrolysis processes. Chemosphere, 45, 1111–1117. 10.1016/s0045-6535(01)00053-4.Search in Google Scholar

Wenning, H. P. (1993). The VEBA OEL Technologie pyrolysis process. Journal of Analytical and Applied Pyrolysis, 25, 301–310. 10.1016/0165-2370(93)80049-6.Search in Google Scholar

Xu, Y., Zhang, Y. F., Wang, Y., Zhang, G. J., & Chen, L. (2013). Gas evolution characteristics of lignite during low temperature pyrolysis. Journal of Analytical and Applied Pyrolysis, 104, 625–631. 10.1016/j.jaap.2013.05.004.Search in Google Scholar

Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 45, 651–671. 10.1016/s0196-8904(03)00177-8.Search in Google Scholar

Zhou, C. G., Zhang, Q. L., Arnold, L., Yang, W. H., & Blasiak, W. (2013). A study of the pyrolysis behaviors of pelletized recovered municipal solid waste fuels. Applied Energy, 107, 173–182. 10.1016/j.apenergy.2013.02.029.Search in Google Scholar

Received: 2015-9-16
Revised: 2016-4-11
Accepted: 2016-4-11
Published Online: 2016-7-19
Published in Print: 2016-11-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. Fluorescence-enhanced optical sensor for detection of Al3+ in water based on functionalised nanoporous silica type SBA-15
  3. Original Paper
  4. 3′-O-(3-Chloropivaloyl)quercetin, α-glucosidase inhibitor with multi-targeted therapeutic potential in relation to diabetic complications
  5. Original Paper
  6. Production of high-content galacto-oligosaccharides mixture using β-galactosidase and Kluyveromyces marxianus entrapped in polyvinylalcohol gel
  7. Original Paper
  8. Efficient utilization of inulin and glycerol as fermentation substrates in erythritol and citric acid production using Yarrowia lipolytica expressing inulinase
  9. Original Paper
  10. Production and characterization of surfactant-stable fungal keratinase from Gibberella intermedia CA3-1 with application potential in detergent industry
  11. Original Paper
  12. Vapour-phase condensation of methyl propionate with trioxane over alumina-supported potassium catalyst
  13. Original Paper
  14. Slow pyrolysis of pre-dried sewage sludge
  15. Original Paper
  16. Synthesis, antioxidant, antibacterial, and DFT study on a coumarin based salen-type Schiff base and its copper complex
  17. Original Paper
  18. Identification of selective oxidation of TiC/SiC composite with X-ray diffraction and Raman spectroscopy
  19. Original Paper
  20. Toxicity of zinc oxide nanoparticles to the annelid Enchytraeus crypticus in agar-based exposure media
  21. Original Paper
  22. Synthesis and antibacterial evaluation of novel Schiff base derivatives containing 4(3H)-quinazolinone moiety
  23. Short Communication
  24. The aza-Pudovik reaction accelerated in external constant magnetic field
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0089/html
Scroll to top button