Startseite Synthesis, antioxidant, antibacterial, and DFT study on a coumarin based salen-type Schiff base and its copper complex
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis, antioxidant, antibacterial, and DFT study on a coumarin based salen-type Schiff base and its copper complex

  • Vibha Sharma EMAIL logo , Ekta Kundra Arora und Savio Cardoza
Veröffentlicht/Copyright: 25. Juni 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Synthesis of new efficient compounds is becoming urgent due to the resistance of organisms to drugs. Salen derivatives have interesting therapeutic and industrial applications. A coumarin based derivative of salen, 7-hydroxy-8-((E)-((2-((E)-((7-hydroxy-5-methyl-2-oxo-3,8a-dihydro-2H-chromen-8-yl)methylene)amino)-4-methylphenyl)imino)methyl)-5-methyl-2H-chromen-2-one (L), and its copper complex, CuL, have been synthesized and characterized. Antibacterial and antioxidant activity of these compounds have been evaluated and electronic, optical and molecular properties have been calculated using density functional theory (DFT) with B3LYP. The results were correlated with the biological activity and reactivity of the compounds. Experimental and theoretical calculations indicate that the studied copper complex has the potential to function as a drug. © 2016 Institute of Chemistry, Slovak Academy of Sciences

Acknowledgements

The authors are grateful the University Grants Commission (UGC) for financial support. One of the authors (SC) is thankful to the UGC for the grant Project Fellowship under the Major Research Project Scheme (F. No. 42-380/2013(SR)).

Supplementary data

Supplementary data associated with this article can be found in the online version of this paper (DOI: 10.1515/chempap-2016-0083).

References

Adhikary, C., Banerjee, S., Chakraborty, J., & Ianelli, S. (2013). Copper (II) azide complexes with NNO donor ligands: Syntheses, structure, catalysis and biological studies. Polyhedron, 65, 48–53. 10.1016/j.poly.2013.08.019.Suche in Google Scholar

Armarego, W. F. L., & Perrin, D. D. (1980). Purification of laboratory chemicals. Oxford, UK: Butterworth-Heinemann.Suche in Google Scholar

Attri, P., Bhatia, R., Gaur, J., Arora, B., Gupta, A., Kumar, N., & Choi, E. H. (2014). Triethylammonium acetate ionic liquid assisted one-pot synthesis of dihydropyrimidinones and evaluation of their antioxidant and antibacterial activities. Arabian Journal of Chemistry. 10.1016/j.arabjc.2014.05.007. (in press)Suche in Google Scholar

Bagihalli, G. B., Avaji, P. G., Patil, S. A., & Badami, P. S. (2008). Synthesis, spectral characterization, in vitro antibacterial, antifungal and cytotoxic activities of Co(II), Ni(II) and Cu(II) complexes with 1,2,4-triazole Schiff bases. European Journal of Medicinal Chemistry, 43, 2639–2649. 10.1016/j.ejmech.2008.02.013.Suche in Google Scholar

Baudry, M., Etienne, S., Bruce, A., Palucki, M., Jacobsen, E., & Malfroy, B. (1993). Salen-manganese complexes are superoxide dismutase-mimics. Biochemical and Biophysical Research Communications, 192, 964–968. 10.1006/bbrc.1993.1509.Suche in Google Scholar

Bazzicalupi, C., Biagini, S., Bianchi, A., Faggi, E., Giorgi, C., Gratteri, P., Pina, F., & Valtancoli, B. (2012). Thermodynamic and fluorescence emission properties of the Zn(II), Cd(II) and Pb(II) complexes with a fluorescent chelator bearing phenanthroline and naphthalene subunits. Inorganica Chimica Acta, 381, 229–235. 10.1016/j.ica.2011.09.027.Suche in Google Scholar

Belaid, S., Benali-Badtich, O., Bouet, G., & Landreau, A. (2015). Synthesis, characterization, and biological activities of oxovanadium(IV) and cadmium(II) complexes with reduced Schiff bases derived from N, N′-0-phenylenebis(salicylideneimine). Chemical Papers, 69, 1350–1360. 10.1515/chempap-2015-0132.Suche in Google Scholar

Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–1200. 10.1038/1811199a0.Suche in Google Scholar

Boucher, L. J. (1974). Manganese Schiff’s base complexes—II. Synthesis and spectroscopy of chloro-complexes of some derivatives of (salicylaldehydeethylenediimato) manganese (III). Journal of Inorganic and Nuclear Chemistry, 36, 531–536. 10.1016/0022-1902(74)80108-9.Suche in Google Scholar

Cozzi, P. G. (2004). Metal-Salen Schiff base complexes in catalysis: practical aspects. Chemical Society Reviews, 33, 410–421. 10.1039/b307853c.Suche in Google Scholar PubMed

Datta, A. (2009). Synthesis and structural characterization of N-(2-pyridylmethyl)-3-methoxysalicylaldiminato copper(II) chloride. Journal of Chemical Crystallography, 39, 619–622. 10.1007/s10870-009-9515-2.Suche in Google Scholar

Ding, W. Q.,& Lind, S. E. (2009). Metal ionophores – an emerging class of anticancer drugs. IUBMB Life, 61, 1013–1018. 10.1002/iub.253.Suche in Google Scholar

Dronskowski, R. (2005). Computational chemistry of solid state materials a guide for materials scientists, chemists, physicists and others. Weinheim, Germany: Wiley-VCH.10.1002/9783527612277Suche in Google Scholar

Ejiah, F. N., Fasina, T. M., Familoni, O. B., & Ogunsola, F. T. (2013). Substituent effect on spectral and antimicrobial activity of Schiff bases derived from aminobenzoic acids. Advances in Biological Chemistry, 2013, 475–479. 10.4236/abc.2013.35051.Suche in Google Scholar

Ejidike, I. P., & Ajibade, P. A. (2015). Synthesis, characterization and biological studies of metal(II) complexes of (3E)-3-[(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl) imino]-1-phenylbutan-1-one Schiff Base. Molecules, 20, 97889802. 10.3390/molecules20069788.Suche in Google Scholar

El-Ayaan, U., El-Metwally, N. M., Youssef, M. M., & El Bialy, S. A. A. (2007). Perchlorate mixed-ligand copper(II) complexes of ß-diketone and ethylene diamine derivatives: thermal, spectroscopic and biochemical studies. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 68, 1278–1286. 10.1016/j.saa.2007.02.011.Suche in Google Scholar

Evans, D. H. (2008). One-electron and two-electron transfers in electrochemistry and homogeneous solution reactions. Chemical Reviews, 108, 2113–2144. 10.1021/cr068066l.Suche in Google Scholar

Geary, W. J. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coordination Chemistry Reviews, 7, 81–122. 10.1016/s0010-8545(00)80009-0.Suche in Google Scholar

Gopalakrishnan, S., & Joseph, J. (2009). Antifungal activities of copper(II) with biosensitive macrocyclic Schiff base ligands derived from 4-aminoantipyrine derivatives. Mycobiology, 37, 141–146. 10.4489/myco.2009.37.2.141.Suche in Google Scholar

Gülçin, İ., Şat, İ. G., Beydemir, Ş. Elmastaş, M., & Küfreviolu, Ö. İ (2004). Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chemistry, 87, 393–400. 10.1016/j.foodchem.2003.12.008.Suche in Google Scholar

Gupta, K. C., & Sutar, A. K. (2008). Catalytic activities of Schiff base transition metal complexes. Coordination Chemistry Reviews, 252, 1420–1450. 10.1016/j.ccr.2007.09.005.Suche in Google Scholar

Harinath, Y., Kumar Reddy, D. H., Kumar, B. N., Apparao, C., & Seshaiah, K. (2013). Synthesis, spectral characterization and antioxidant activity studies of a bidentate Schiff base, 5-methyl thiophene-2-carboxaldehyde-carbohydrazone and its Cd(II), Cu(II), Ni(II) and Zn(II) complexes. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 101, 264–272. 10.1016/j.saa.2012.09.085.Suche in Google Scholar PubMed

Kulkarni, A., Patil, S. A., & Badami, P. S. (2010). DNA cleavage and in vitro antimicrobial studies of Co (II), Ni (II), and Cu (II) complexes with ONNO donor Schiff bases: Synthesis, spectral characterization, and electrochemical studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 25, 87–96. 10.3109/14756360903017791.Suche in Google Scholar PubMed

Kumar, S., & Gupta, R. (2011). Copper(II) complexes of 13-membered amide-based macrocyclic ligands: Effect of electronic substituents on redox properties. Indian Journal of Chemistry-Part A Inorganic Physical Theoretical and Analytical, 50, 1369–1379.Suche in Google Scholar

Leeson, P. (2012). Drug discovery: Chemical beauty contest. Nature, 481, 455–456. 10.1038/481455a.Suche in Google Scholar PubMed

Liu, H., Wang, H., Gao, F., Niu, D., & Lu, Z. (2007). Selfassembly of copper(II) complexes with substituted aroylhydrazones and monodentate N-heterocycles: synthesis, structure and properties. Journal of Coordination Chemistry, 60, 2671–2678. 10.1080/00958970701302404.Suche in Google Scholar

Lever, A. (1968). Inorganic electronic spectroscopy. Amsterdam, The Netherlands: Elsevier.Suche in Google Scholar

Mahmoud, W. H., Mohamed, G. G., & El-Dessouky, M. M. (2014). Synthesis, characterization and in vitro biological activity of mixed transition metal complexes of lornoxicam with 1,10-phenanthroline. International Journal of Electrochemical Science, 9, 1415–1438.Suche in Google Scholar

Mebi, C. A. (2011). DFT study on structure, electronic properties, and reactivity of cis-isomers of [(NC5H4-S)2Fe(CO)2]. Journal of Chemical Sciences, 123, 727–731. 10.1007/s12039-011-0131-2.Suche in Google Scholar

Mobinikhaledi, A., Zendehdel, M., & Safari, P. (2014). Effect of substituents and encapsulation on the catalytic activity of copper(II) complexes of two tridentate Schiff base ligands based on thiophene: benzyl alcohol and phenol oxidation reactions. Transition Metal Chemistry, 39, 431–442. 10.1007/s11243-014-9817-x.Suche in Google Scholar

Molinspiration (2015). Cheminformatics on the web. Retrieved March 24, 2016, from http://www.molinspiration.comSuche in Google Scholar

Nakamoto, K. (1970). Infrared spectra of inorganic and coordination compounds (2nd ed.). New York, NY, USA: Wiley-Interscience.Suche in Google Scholar

Natarajan, C., Tharmaraj, P., & Murugesan, R. (1992). In situ synthesis and spectroscopic studies of copper(II) and nickel(II) complexes of 1-hydroxy-2-naphthylstyrylketoneimines. Journal of Coordination Chemistry, 26, 205–213. 10.1080/00958979209409214.Suche in Google Scholar

Prakash, A., Gangwar, M. P., & Singh, K. K. (2011). Synthesis, spectroscopy and biological studies of nickel(II) complexes with tetradentate Schiff bases having N2O2 donor group. International Journal of ChemTech Research, 3, 222–229.Suche in Google Scholar

Pui, A., Policar, C., & Mahy, J. P. (2007). Electronic and steric effects in cobalt Schiff bases complexes: Synthesis, characterization and catalytic activity of some cobalt(II) tetra-halogens-dimethyl salen complexes. Inorganica Chimica Acta, 360, 2139–2144. 10.1016/j.ica.2006.10.040.Suche in Google Scholar

Rekha, S., & Nagasundara, K. R. (2006). Complexes of the Schiff base derived from 4-amino-phenyl benzimidazole and 2, 2′-dehydropyrollidene-N-aldehyde with Zn(II), Cd(II) and Hg(II) halides. Indian Journal of Chemistry, 45, 2421–2425.Suche in Google Scholar

Saadeh, S. M. (2013). Synthesis, characterization and biological properties of Co(II), Ni(II), Cu(II) and Zn(II) complexes with an SNO functionalized ligand. Arabian Journal of Chemistry, 6, 191–196. 10.1016/j.arabjc.2010.10.002.Suche in Google Scholar

Salanti, A., Orlandi, M., Tolppa, E. L., & Zoia, L. (2010). Oxidation of isoeugenol by salen complexes with bulky substituents. International Journal of Molecular Sciences, 11, 912–926. 10.3390/ijms11030912.Suche in Google Scholar PubMed PubMed Central

Sheikh, J., Juneja, H., Ingle, V., Ali, P., & Hadda, T. B. (2013). Synthesis and in vitro biology of Co(II), Ni(II), Cu(II) and Zinc(II) complexes of functionalized ß-diketone bearing energy buried potential antibacterial and antiviral O,O pharmacophore sites. Journal of Saudi Chemical Society, 17, 269–276. 10.1016/j.jscs.2011.04.004.Suche in Google Scholar

Shimokawa, C., Tachi, Y., Nishiwaki, N., Ariga, M., & Itoh, S. (2006). Structural characterization of copper(I) complexes supported by ß-diketiminate ligands with different substitution patterns. Bulletin of the Chemical Society of Japan, 79, 118–125. 10.1246/bcsj.79.118.Suche in Google Scholar

Spirtovic-Halilovic, S., Salihovic, M., Dzudzevic-Cancar, H., Trifunovic, S., Roca, S., Softic, D., & Zavrsnik, D. (2014). DFT study and microbiology of some coumarin-based compounds containing a chalcone moiety. Journal of the Serbian Chemical Society, 79, 435–443. 10.2298/jsc130628077s.Suche in Google Scholar

Tripathi, B., Bhatia, R., Walia, S., & Kumar, B. (2012). Chemical composition and evaluation of tagetes erecta (var. Pusa narangi genda) essential oil for its antioxidant and antimicrobial activity. Biopesticides International, 8, 138–146.Suche in Google Scholar

Tümer, M., Köksal, H., & Serin, S. (1998). Synthesis, characterization and thermal investigation of some metal complexes derived from new Schiff base ligands. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 28, 1393–1404. 10.1080/00945719809349413.Suche in Google Scholar

Türkkan, B., Sariboğa, B., & Sariboğa, N. (2011). Synthesis, characterization and antimicrobial activity of 3,5-di-tertbutylsalicylaldehyde-S-methylthiosemicarbazones and their Ni(II) complexes. Transition Metal Chemistry, 36, 679–684. 10.1007/s11243-011-9518-7.Suche in Google Scholar

Uma, V., Elango, M., & Nair, B. U. (2007). Copper (II) terpyridine complexes: effect of substituent on DNA binding and nuclease activity. European Journal of Inorganic Chemistry, 2007, 3484–3490. 10.1002/ejic.200700053.Suche in Google Scholar

Vedanayaki, S., Jayaseelan, P., Sandhanamalar, D., & Rajavel, R. (2011). Synthesis, spectral characterization and antimicrobial activities of unsymmetrical Schiff base metal complexes. Asian Journal of Chemistry, 23, 407–409.Suche in Google Scholar

von Eschwege, K. G., & Conradie, J. (2011). Redox potentials of ligands and complexes-a DFT approach. South African Journal of Chemistry, 64, 203–209.Suche in Google Scholar

von Pechmann, H. (1884). Neue Bildungsweise der Cumarine. Synthese des Daphnetins. I. Berichte Der Deutschen Chemischen Gesellschaft, 17, 929–936. 10.1002/cber.188401701248. (in German)Suche in Google Scholar

Williams, D. N., Ehrman, S. H., & Pulliam Holoman, T. R. (2006). Evaluation of the microbial growth response to inorganic nanoparticles. Journal of Nanobiotechnology, 4, 3. 10.1186/1477-3155-4-3.Suche in Google Scholar

Yano, S., Takizawa, S., Sugita, H., Takahashi, T., Shioi, H., Tsubomura, T., & Yoshikawa, S. (1985). Reactions of metal complexes with carbohydrates: Synthesis and characterization of novel nickel(II) complexes containing glycosylamines derived from a monosaccharide and a diamine. An X-ray crystallographic study of (ethylenediamine){N-(2-aminoethyl)-D-fructopyranosylamine}nickel(II) – Cl2 – CH3OH. Carbohydrate Research, 142, 179–193. 10.1016/0008-6215(85)85021-7.Suche in Google Scholar

Young, D. (2001). Computational chemistry: A practical guide for applying techniques to real world problems. New York, NY, USA: Wiley.10.1002/0471220655Suche in Google Scholar

Received: 2015-9-24
Revised: 2016-3-2
Accepted: 2016-3-21
Published Online: 2016-6-25
Published in Print: 2016-11-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Original Paper
  2. Fluorescence-enhanced optical sensor for detection of Al3+ in water based on functionalised nanoporous silica type SBA-15
  3. Original Paper
  4. 3′-O-(3-Chloropivaloyl)quercetin, α-glucosidase inhibitor with multi-targeted therapeutic potential in relation to diabetic complications
  5. Original Paper
  6. Production of high-content galacto-oligosaccharides mixture using β-galactosidase and Kluyveromyces marxianus entrapped in polyvinylalcohol gel
  7. Original Paper
  8. Efficient utilization of inulin and glycerol as fermentation substrates in erythritol and citric acid production using Yarrowia lipolytica expressing inulinase
  9. Original Paper
  10. Production and characterization of surfactant-stable fungal keratinase from Gibberella intermedia CA3-1 with application potential in detergent industry
  11. Original Paper
  12. Vapour-phase condensation of methyl propionate with trioxane over alumina-supported potassium catalyst
  13. Original Paper
  14. Slow pyrolysis of pre-dried sewage sludge
  15. Original Paper
  16. Synthesis, antioxidant, antibacterial, and DFT study on a coumarin based salen-type Schiff base and its copper complex
  17. Original Paper
  18. Identification of selective oxidation of TiC/SiC composite with X-ray diffraction and Raman spectroscopy
  19. Original Paper
  20. Toxicity of zinc oxide nanoparticles to the annelid Enchytraeus crypticus in agar-based exposure media
  21. Original Paper
  22. Synthesis and antibacterial evaluation of novel Schiff base derivatives containing 4(3H)-quinazolinone moiety
  23. Short Communication
  24. The aza-Pudovik reaction accelerated in external constant magnetic field
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0083/html?lang=de
Button zum nach oben scrollen