Home Chemoselective synthesis of 1,2-disubstituted benzimidazoles in lactic acid without additive
Article
Licensed
Unlicensed Requires Authentication

Chemoselective synthesis of 1,2-disubstituted benzimidazoles in lactic acid without additive

  • Zhi-Yu Yu , Jia Zhou , Qiu-Sheng Fang , Ling Chen and Zhi-Bin Song EMAIL logo
Published/Copyright: May 23, 2016
Become an author with De Gruyter Brill

Abstract

Lactic acid is recognised as a biocompatible medium for the chemoselective synthesis of the 1,2-disubstituted benzimidazole scaffold via a direct one-pot cyclocondensation of o-phenylenediamine with aldehydes. Various 1,2-disubstituted benzimidazole derivatives were successfully synthesised with high selectivity with good to excellent yields without any additional catalyst or additive. Most products could be isolated by a simple filtration after completion of the reactions. Satisfactory results were also obtained from multi-gram scale reactions.

Acknowledgements

This work received financial support from the Department of Education of Jiangxi Provinceand Key Laboratory of Functional Small Organic Molecules, Ministry of Education (no. GJJ13214, KLFS-KF-201229).

References

Ahmadian, H., Veisi, H., Karami, C., Sedrpoushan, A., Nouri, M., Jamshidi, F., & Alavioon, I. (2015). Cobalt manganese oxide nanoparticles as recyclable catalyst for efficient synthesis of 2-aryl-1-arylmethyl-1H-1,3-benzimidazoles under solvent-free conditions. Applied Organometallic Chemistry, 29, 266–269. DOI: 10.1002/aoc.3283.10.1002/aoc.3283Search in Google Scholar

Azarifar, D., Pirhayati, M., Maleki, B., Sanginabadi, M., & Yami, R. N. (2010). Acetic acid-promoted condensation of o-phenylenediamine with aldehydes into 2-aryl-1(arylmethyl)-1H-benzimidazoles under microwave irradiation. Journal of the Serbian Chemical Society, 75, 1181– 1189. DOI: 10.2298/jsc090901096a.10.2298/jsc090901096aSearch in Google Scholar

Boiani, M., & González, M. (2005). Imidazole and benzimidazole derivatives as chemotherapeutic agents. Mini-Reviewsin Medicinal Chemistry, 5, 409–424. DOI: 10.2174/1389557053544047.10.2174/1389557053544047Search in Google Scholar PubMed

Brain, C. T., & Steer, J. T. (2003). An improved procedure for the synthesis of benzimidazoles, using palladium-catalyzed aryl-amination chemistry. The Journal Organic Chemistry, 68, 6814–6816. DOI: 10.1021/jo034824l.10.1021/jo034824lSearch in Google Scholar PubMed

Carvalho, L. C. R., Fernandes, E., & Marques, M. M. B. (2011). Developments towards regioselective synthesis of 1,2-disubstituted benzimidazoles. Chemistry – A European Journal, 17, 12544–12555. DOI: 10.1002/chem.201101508.10.1002/chem.201101508Search in Google Scholar PubMed

Chebolu, R., Kommi, D. N., Kumar, D., Bollineni, N., & Chakraborti, A. K. (2012). Hydrogen-bond-driven electrophilic activation for selectivity control: scope and limitations of fluorous alcohol-promoted selective formation of 1,2-disubstituted benzimidazoles and mechanistic insight for rationale of selectivity. The Journal Organic Chemistry, 77, 10158–10167. DOI: 10.1021/jo301793z.10.1021/jo301793zSearch in Google Scholar PubMed

Chen, C.J., Yu, J.J., Bi, C.W., Zhang, Y. N., Xu, J. Q., Wang, J. X., & Zhou, M. G. (2009). Mutations in a β-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides. Phytopathology, 99, 1403–1411. DOI: 10.1094/phyto-99-121403.10.1094/phyto-99-121403Search in Google Scholar

Ezquerra, J., Lamas, C., Pastor, A., García-Navío, J., & Vaquero, J. J. (1997). Suzuki-type cross-coupling reaction of 1-benzyl-2-iodo-1H-benzimidazoles with aryl boronic acids: A regioselective route to N-alkylated 6-alkoxy-2aryl-1H-benzimidazoles. Tetrahedron, 53, 12755–12764. DOI: 10.1016/s0040-4020(97)00795-3.10.1016/s0040-4020(97)00795-3Search in Google Scholar

Georgiou, I., Ilyashenko, G., & Whiting, A. (2009). Synthesis of aminoboronic acids and their applications in bifunctional catalysis. Accountsof ChemicalResearch, 42, 756–768. DOI: 10.1021/ar800262v.10.1021/ar800262vSearch in Google Scholar PubMed

Harkal, S., Rataboul, F., Zapf, A., Fuhrmann, C., Riermeier, T., Monsees, A., & Beller, M. (2004). Dialkylphosphinoimidazoles as new ligands for palladium-catalyzed coupling reactions of aryl chlorides. Advanced Synthesis & Catalysis, 346, 1742–1748. DOI: 10.1002/adsc.200404213.10.1002/adsc.200404213Search in Google Scholar

Kallashi, F., Kim, D., Kowalchick, J., Park, Y. J., Hunt, J. A., Ali, A., Smith, C. J., Hammond, M. L., Pivnichny, J. V., Tong, X., Xu, S. S., Anderson, M. S., Chen, Y., Eveland, S. S., Guo, Q., Hyland, S. A., Milot, D. P., Cumiskey, A. M., Latham, M., Peterson, L. B., Rosa, R., Sparrow, C. P., Wright, S. D., & Sinclair, P. J. (2011). 2-Arylbenzoxazoles as CETP inhibitors: Raising HDL-C in cynoCETP transgenic mice. Bioorganic & Medicinal Chemistry Letters, 21, 558–561. DOI: 10.1016/j.bmcl.2010.10.062.10.1016/j.bmcl.2010.10.062Search in Google Scholar PubMed

Kommi, D. N., Kumar, D., Bansal, R., Chebolu, R., & Chakraborti, A. K. (2012). “All-water” chemistry of tandem N-alkylation–reduction–condensation for synthesis of N-arylmethyl-2-substituted benzimidazoles. Green Chemistry, 14, 3329–3335. DOI: 10.1039/c2gc36377a.10.1039/c2gc36377aSearch in Google Scholar

Kommi, D. N., Jadhavar, P. S., Kumar, D., & Chakraborti, A. K. (2013). “All-water” one-pot diverse synthesis of 1,2disubstituted benzimidazoles: hydrogen bond driven ‘synergistic electrophile–nucleophile dual activation’ by water. Green Chemistry, 15, 798–810. DOI: 10.1039/c3gc37004f.10.1039/c3gc37004fSearch in Google Scholar

Kumar, T. B., Sumanth, C., Rao, A. V. D., Kalita, D., Rao, M. S., Sekhar, K. B. C., Kumar, K. S., & Pal, M. (2012). Catalysis by FeF3 in water: a green synthesis of 2-substituted 1,3benzazoles and 1,2-disubstituted benzimidazoles. RSC Advances, 2, 11510–11519. DOI: 10.1039/c2ra22302c.10.1039/c2ra22302cSearch in Google Scholar

Kumar, D., Kommi, D. N., Chebolu, R., Garg, S. K., Kumar, R., & Chakraborti, A. K. (2013). Selectivity control during the solid supported protic acids catalysed synthesis of 1,2-disubstituted benzimidazoles and mechanistic insight to rationalize selectivity. RSCAdvances, 3, 91–98. DOI: 10.1039/c2ra21994h.10.1039/c2ra21994hSearch in Google Scholar

Kumar, B., Smita, K., Kumar, B., & Cumbal, L. (2014). Ultrasoundpromotedand SiO2/CCl3COOH mediated synthesis of 2-aryl-1-arylmethyl-1H-benzimidazole derivatives in aqueous media: An eco-friendly approach. Journalof ChemicalSciences, 126, 1831–1840. DOI: 10.1007/s12039-014-0662-4.10.1007/s12039-014-0662-4Search in Google Scholar

Miller, J. F., Turner, E. M., Gudmundsson, K. S., Jenkinson, S., Spaltenstein, A., Thomson, M., & Wheelan, P. (2010). Novel N-substituted benzimidazole CXCR4 antagonists as potential anti-HIV agents. Bioorganic&MedicinalChemistryLetters, 20, 2125–2128. DOI: 10.1016/j.bmcl.2010.02.053.10.1016/j.bmcl.2010.02.053Search in Google Scholar PubMed

Ozden, S., Atabey, D., Yildiz, S., & G¨oker, H. (2005). Synthesis and potent antimicrobial activity of some novel methyl or ethyl 1H-benzimidazole-5-carboxylates derivatives carrying amide or amidine groups. Bioorganic & Medicinal Chemistry, 13, 1587–1597. DOI: 10.1016/j.bmc.2004.12.025.10.1016/j.bmc.2004.12.025Search in Google Scholar PubMed

Plater, M. J., Barnes, P., McDonald, L. K., Wallace, S., Archer, N., Gelbrich, T., Horton, P. N., & Hursthouse, M. B. (2009). Hidden signatures: new reagents for developing latent fingerprints. Organic & Bimolecular Chemistry, 7, 1633–1641. DOI: 10.1039/b820257e.10.1039/b820257eSearch in Google Scholar PubMed

Porcari, A. R., Devivar, R.V., Kucera, L.S., Drach, J. C., & Townsend, L. B. (1998). Design, synthesis, and antiviral evaluations of 1-(substituted benzyl)-2-substituted-5,6dichlorobenzimidazoles as nonnucleoside analogues of 2,5,6trichloro-1-(beta-D-ribofuranosyl)benzimidazole. Journal of Medicinal Chemistry, 41, 1252–1262. DOI: 10.1021/jm970 559i.10.1021/jm970 559iSearch in Google Scholar

Sharma, H., Kaur, N., Singh, N., & Jang, D. O. (2015). Synergetic catalytic effect of ionic liquids and ZnO nanoparticles on the selective synthesis of 1,2-disubstituted benzimidazoles using a ball-milling technique. Green Chemistry, 17, 4263– 4270. DOI: 10.1039/c5gc00536a.10.1039/c5gc00536aSearch in Google Scholar

Shenvi, R. A., O’Malley, D. P., & Baran, P. S. (2009). Chemoselectivity: The mother of invention in total synthesis. Accounts of Chemical Research, 42, 530–541. DOI: 10.1021/ar800182r.10.1021/ar800182rSearch in Google Scholar PubMed PubMed Central

Vourloumis, D., Takahashi, M., Simonsen, K. B., Ayida, B. K., Barluenga, S., Winters, G. C., & Hermann, T. (2003). Solid-phase synthesis of benzimidazole libraries biased for RNA targets. Tetrahedron Letters, 44, 2807–2811. DOI: 10.1016/s0040-4039(03)00453-2.10.1016/s0040-4039(03)00453-2Search in Google Scholar

Wan, J. P., Gan, S. F., Wu, J. M., & Pan, Y. J. (2009). Water mediated chemoselective synthesis of 1,2-disubstituted benzimidazoles using o-phenylenediamine and the extended synthesis of quinoxalines. GreenChemistry, 11, 1633–1637. DOI: 10.1039/b914286j.10.1039/b914286jSearch in Google Scholar

Yu, Z. Y., Fang, Q. S., Zhou, J., & Song, Z. B. (2015). Reusable proline-based ionic liquid catalyst for the simple synthesis of 2-arylbenzothiazoles in a biomass medium. Research on Chemical Intermediates. DOI: 10.1007/s11164-015-2133-z. (in press)DOI: 10.1007/s11164-015-2133-zSearch in Google Scholar

Zheng, N., & Buchwald, S. L. (2007). Copper-catalyzed regiospecific synthesis of N-alkylbenzimidazoles. Organic Letters, 9, 4749–4751. DOI: 10.1021/ol7020737.0.1021/ol7020737Search in Google Scholar

Zhu, J., Xie, H., Chen, Z., Li, S., & Wu, Y. (2009). Synthesis of N-substituted 2-fluoromethylbenzimidazoles via bis(trifluoroacetoxy)iodobenzene-mediated intramolecular cyclization of N, N′-disubstituted fluoroethanimidamides. Synlett, 2009, 3299–3302. DOI: 10.1055/s-0029-218377.10.1055/s-0029-218377Search in Google Scholar

Received: 2015-7-27
Revised: 2016-2-5
Accepted: 2016-2-11
Published Online: 2016-5-23
Published in Print: 2016-9-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Review
  2. Plant extracts as “green” corrosion inhibitors for steel in sulphuric acid
  3. Original Paper
  4. Use of 6-O-mono-substituted derivatives of β-cyclodextrin-bearing substituent with two permanent positive charges in capillary electrophoresis
  5. Original Paper
  6. Development of ICP-MS and ICP-OES methods for determination of gadolinium in samples related to hospital waste water treatment
  7. Original Paper
  8. Alkyl glycosides as potential anti-Candida albicans growth agents
  9. Original Paper
  10. Preparation of corn stalk-based adsorbents and their specific application in metal ions adsorption
  11. Original Paper
  12. Treatment of metal-plating waste water by modified direct contact membrane distillation
  13. Original Paper
  14. Influence of pH and cationic surfactant on stability and interfacial properties of algerian bitumen emulsion
  15. Original Paper
  16. Synthesis, structural and spectroscopic properties of asymmetric schiff bases derived from 2,3-diaminopyridine
  17. Original Paper
  18. Syntheses of cardanol-based cationic surfactants and their use in emulsion polymerisation
  19. Original Paper
  20. Synthesis of urethane—acrylic multi-block copolymers via electrochemically mediated ATRP
  21. Original Paper
  22. Diazene sulphonate as a cross-linking agent for polymers with pendant triarylamine hole-conducting units
  23. Original Paper
  24. Leaching test for calcined kaolinite and kaolinite/TiO2 photoactive composite
  25. Original Paper
  26. Chitosan sponge matrices with β-cyclodextrin for berberine loadinging
  27. Original Paper
  28. Ageing of plasticized poly(lactic acid)/poly(β-hydroxybutyrate) blend films under artificial UV irradiation and under real agricultural conditions during their application as mulches
  29. Original Paper
  30. Synthesis, in-vitro cytotoxicity of 4H-benzo[h]chromene derivatives and structure–activity relationships of 4-aryl group and 3-, 7-positions
  31. Original Paper
  32. Chemoselective synthesis of 1,2-disubstituted benzimidazoles in lactic acid without additive
  33. Original Paper
  34. Sorption properties of sheep wool irradiated by accelerated electron beam
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0056/html?lang=en
Scroll to top button