Home Use of 6-O-mono-substituted derivatives of β-cyclodextrin-bearing substituent with two permanent positive charges in capillary electrophoresis
Article
Licensed
Unlicensed Requires Authentication

Use of 6-O-mono-substituted derivatives of β-cyclodextrin-bearing substituent with two permanent positive charges in capillary electrophoresis

  • Martina Havlikova , Zuzana Bosakova EMAIL logo , Gabor Benkovics , Jindrich Jindrich , Martin Popr and Pavel Coufal
Published/Copyright: April 22, 2016
Become an author with De Gruyter Brill

Abstract

This study details the use of two permanently positively charged mono-substituted β-cyclodextrin derivatives, 6I-deoxy-6I-(N′,N′,N′,N′,N′-pentamethyl-ethylene-l,2-diammonio)-cyclomaltoheptose dichloride (PEMEDA-β-CD) and the newly synthesised 6I-deoxy-6I-(N,N,N′,N′,N′-pentamethyl-propylene-1,3-diammonio)-cyclomaltoheptose (PEMPDA-β-CD) as chiral selectors in capillary electrophoresis. Cyclodextrin (CD) derivatives were tested as additives in various buffers at various pH values with the optional addition of an organic modifier. Fourteen anionogenic analytes were tested, including native amino acids, N-blocked amino acids and profens, which were detected using a UV-VIS detector at optimal wavelengths of 214 nm, 254 nm or 280 nm. A borate buffer (15 mmol L–1) at pH 9.5 without the addition of an organic modifier was chosen as a suitable background electrolyte. In addition, the effect of the concentration of the chiral selector on the separation and enantioseparation of selected analytes was monitored. The additions of cyclodextrin derivatives varied within the concentration range of 0.0-5.0 mmol L–1. Both chiral selectors were suitable for the enantioseparation of N-Boc-d,l-tryptophan, which was already separated on the baseline at 0.5 mmol L–1 concentration of the chiral selector.

Acknowledgements

The financial support received from the Czech Science Foundation, grant no. 13-01440S, is gratefully acknowledged.

References

Benkovics, G., Hodek, O., Havlikova, M., Bosakova, Z., Coufal, P., Malanga, M., Fenyvesi, E., Darcsi, A., Beni, S., & Jin-drich, J. (2016). Supramolecular structures based on regioi-somers of cinnamyl-α-cyclodextrins – new media for capillary separation techniques. Beilstein Journal of Organic Chemistry, 12, 97-109. DOI: 10.3762/bjoc.12.11.10.3762/bjoc.12.11Search in Google Scholar PubMed PubMed Central

Cope, A. C., & Mehta, A. S. (1963). Mechanism of the Hof-mann elimination reaction: An ylide intermediate in the py-rolysis of a highly branched quaternary hydroxide. Journal of the American Chemical Society, 85, 1949-1952. DOI: 10.1021/ja00896a012.10.1021/ja00896a012Search in Google Scholar

Cucinotta, V., Contino, A., Giuffrida, A., Maccarrone, G., & Messina, M. (2010). Application of charged single isomer derivatives of cyclodextrins in capillary electrophoresis for chiral analysis. Journal of Chromatography A, 1217, 953– 967. DOI: 10.1016/j.chroma.2009.11.094.10.1016/j.chroma.2009.11.094Search in Google Scholar PubMed

de Boer, T., de Zeeuw, R. A., de Jong, G. J., & Ensing, K. (2000). Recent innovations in the use of charged cyclodextrins in capillary electrophoresis for chiral separations in pharmaceutical analysis. Electrophoresis, 21, 3220–3239. DOI: 10.1002/1522-2683(20000901)21:15 3220::aid-elps322 0 3.0.co;2-x. 10.1002/1522-2683(20000901)21:15 3220::aid-elps322 0>3.0.co;2-xSearch in Google Scholar

Del Valle, E. M. M. (2004). Cyclodextrins and their uses: a review. Process Biochemistry, 39, 1033-1046. DOI: 10.1016/ s0032-9592(03)00258-9. 10.1016/ s0032-9592(03)00258-9Search in Google Scholar

Fanali, S. (2000). Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors. Journal of Chromatography A, 875, 89-122. DOI: 10.1016/s0021-9673(99)01309-6. 10.1016/s0021-9673(99)01309-6Search in Google Scholar

Galaverna, G., Paganuzzi, M. C., Corradini, R., Dossena, A., & Marchelli, R. (2001). Enantiomeric separation of hydroxy acids and carboxylic acids by diamino-β-cyclodextrins (AB, AC, AD) in capillary electrophoresis. Electrophoresis, 22, 3171-3177. DOI: 10.1002/1522-2683(200109)22:15 3171::aid-elps3171 3.0.co;2-k. 10.1002/1522-2683(200109)22:15 3171::aid-elps3171>3.0.co;2-kSearch in Google Scholar

Hedges, A. R. (1998). Industrial applications of cyclodextrins. Chemical Reviews, 98, 2035-2044. DOI: 10.1021/cr970014w. 10.1021/cr970014wSearch in Google Scholar

Juvancz, Z., Kendrovics, R. B., Iványi, R., & Szente, L. (2008). The role of cyclodextrins in chiral capillary electrophoresis. Electrophoresis, 29, 1701-1712. DOI: 10.1002/elps.200700 657. 10.1002/elps.200700 657Search in Google Scholar

Mikuš, P., & Kaniansky, D. (2002). Capillary zone electrophoresis monitoring of enantioselective hydrogenation of N-acyldehydroamino acids. Journal of Separation Science, 25, 872-876. DOI: 10.1002/1615-9314(20021001)25:14 871:: AID-JSSC872>3.0.CO;2-G. 10.1002/1615-9314(20021001)25:14 871:: AID-JSSC872>3.0.CO;2-GSearch in Google Scholar

Nzeadibe, K., & Vigh, G. (2007). Synthesis of mono-6-deoxy-6-N,N,N′N′-pentamethylethylenediammonio-cyclomalto-heptaose, a single-isomer, monosubstituted, permanently di-cationic β-CD and its use for enantiomer separations by CE. Electrophoresis, 28, 2589-2605. DOI: 10.1002/elps.200700 028. 10.1002/elps.200700 028Search in Google Scholar

Popr, M., Hybelbauerová, S., & Jindfich, J. (2014). A complete series of 6-deoxy-monosubstituted tetraalkylammonium derivatives of α-, β-, and γ-cyclodextrin with 1, 2, and 3 permanent positive charges. Beilstein Journal of Organic Chemistry, 10, 1390-1396. DOI: 10.3762/bjoc.10.142. 10.3762/bjoc.10.142Search in Google Scholar PubMed PubMed Central

Popr, M., Filippov, S. K., Matushkin, N., Dian, J., & Jindfich, J. (2015). Properties of cationic monosubstituted tetraalkylammonium cyclodextrin derivatives – their stability, com-plexation ability in solution or when deposited on solid an-ionic surface. Beilstein Journal of Organic Chemistry, 11, 192-199. DOI: 10.3762/bjoc.11.20. 10.3762/bjoc.11.20Search in Google Scholar PubMed PubMed Central

Sánchez-Hernández, L., Castro-Puyana, M., Marina, M. L., & Crego, A. L. (2012). Recent approaches in sensitive enan-tioseparations by CE. Electrophoresis, 33, 228-242. DOI: 10.1002/elps.201100404. 10.1002/elps.201100404Search in Google Scholar PubMed

Skelley, A. M., & Mathies, R. A. (2003). Chiral separation of fluorescamine-labeled amino acids using microfabricated capillary electrophoresis devices for extraterrestrial exploration. Journal of Chromatography A, 1021, 191–199. DOI: 10.1016/j.chroma.2003.08.096. 10.1016/j.chroma.2003.08.096Search in Google Scholar PubMed

Stockton, A. M., Chiesl, T. N., Scherer, J. R., & Math-ies, R. A. (2009). Polycyclic aromatic hydrocarbon analysis with the Mars Organic Analyzer microchip capillary elec-trophoresis system. Analytical Chemistry, 81, 790–796. DOI: 10.1021/ac802033u. 10.1021/ac802033uSearch in Google Scholar PubMed

SuB, F., Poppitz, W., & Scriba, G. K. E. (2002). Separation of dipeptide and tripeptide enantiomers in capillary electrophoresis by the cationic cyclodextrin derivative 2-hydroxypropyltrimethylammonium-β-cyclodextrin and by neutral β-cyclodextrin derivatives at alkaline pH. Journal of Separation Science, 25, 1147-1154. DOI: 10.1002/1615-9314(20021101)25:15/17<1147::AID-JSSC1147 3.0.CO;2-C. 10.1002/1615-9314(20021101)25:15/17 1147::AID-JSSC1147>3.0.CO;2-CSearch in Google Scholar

Szente, L., & Szemán, J. (2013). Cyclodextrins in analytical chemistry: Host–guest type molecular recognition. Analytical Chemistry, 85, 8024-8030. DOI: 10.1021/ac400639y. 10.1021/ac400639ySearch in Google Scholar

Tang, W., Muderawan, I. W., Ng, S. C., & Chan, H. S. O. (2006). Enantioselective separation in capillary emectrophoresis using a novel mono-6A-propylammonium-β-cyclodextrin as chiral selector. Analytica Chimica Acta, 555, 63–67. DOI: 10.1016/j.aca. 2005.08.064. 10.1016/j.aca. 2005.08.064Search in Google Scholar

Terabe, S., Ozaki, H., Otsuka, K., & Ando, T. (1985). Electrokinetic chromatography with 2-O-carboxymethyl-β-cyclodextrin as a moving "stationary" phase. Journal of Chromatography, 332, 211-217. DOI: 10.1016/s0021-9673 (01)83299-4. 10.1016/s0021-9673 (01)83299-4Search in Google Scholar

Terabe, S. (1989). Electrokinetic chromatography: an interface between electrophoresis and chromatography. TrAC Trends in Analytical Chemistry, 8, 129-134. DOI: 10.1016/0165-9936(89)85022-8. 10.1016/0165-9936(89)85022-8Search in Google Scholar

Tsioupi, D. A., Stefan-van Staden, R. I., & Kapnissi-Christo-doulou, C. P. (2013). Chiral selectors in CE: Recent developments and applications. Electrophoresis, 34, 178–204. DOI: 10.1002/elps.201200239. 10.1002/elps.201200239Search in Google Scholar PubMed

Wang, F., & Khaledi, M. G. (1998). Nonaqueous capillary electrophoresis chiral separations with quaternary ammonium β-cyclodextrin. Journal of Chromatography A, 817, 121–128. DOI: 10.1016/s0021-9673(98)00484-1. 10.1016/s0021-9673(98)00484-1Search in Google Scholar PubMed

Wang, S., Dai, Y., Wu, J., Zhou, J., Tang, J., & Tang, W. (2013). Methoxyethylammonium monosubstituted β-cyclodextrin as the chiral selector for enantioseparation in capillary electrophoresis. Journal of Chromatography A, 1277, 84–92. DOI: 10.1016/j.chroma.2012.12.045. 10.1016/j.chroma.2012.12.045Search in Google Scholar PubMed

Ward, T. J., & Ward, K. D. (2012). Chiral separations: A review of current topics and trends. Analytical Chemistry, 84, 626– 635. DOI: 10.1021/ac202892w. 10.1021/ac202892wSearch in Google Scholar PubMed

Xiao, Y., Wang, Y., Ong, T. T., Ge, L., Tan, S. N., Young, D. J., Tan, T. T. Y., & Ng, S. C. (2010). Chiral capillary electrophoresis with cationic pyrrolidinium-β-cyclodextrin derivatives as chiral selectors. Journal of Separation Science, 33, 1797-1805. DOI: 10.1002/jssc.200900732. 10.1002/jssc.200900732Search in Google Scholar PubMed

Zhou, J., Ai, F., Zhou, B. J., Tang, J., Ng, S. C., & Tang, W. (2013). Hydroxyethylammonium monosubstituted cyclodextrin as chiral selector for capillary electrophoresis. Analytica Chimica Acta, 800, 95-102. DOI: 10.1016/j.aca.2013.09.021. 10.1016/j.aca.2013.09.021Search in Google Scholar PubMed

Received: 2015-10-30
Revised: 2016-1-22
Accepted: 2016-1-29
Published Online: 2016-4-22
Published in Print: 2016-9-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Review
  2. Plant extracts as “green” corrosion inhibitors for steel in sulphuric acid
  3. Original Paper
  4. Use of 6-O-mono-substituted derivatives of β-cyclodextrin-bearing substituent with two permanent positive charges in capillary electrophoresis
  5. Original Paper
  6. Development of ICP-MS and ICP-OES methods for determination of gadolinium in samples related to hospital waste water treatment
  7. Original Paper
  8. Alkyl glycosides as potential anti-Candida albicans growth agents
  9. Original Paper
  10. Preparation of corn stalk-based adsorbents and their specific application in metal ions adsorption
  11. Original Paper
  12. Treatment of metal-plating waste water by modified direct contact membrane distillation
  13. Original Paper
  14. Influence of pH and cationic surfactant on stability and interfacial properties of algerian bitumen emulsion
  15. Original Paper
  16. Synthesis, structural and spectroscopic properties of asymmetric schiff bases derived from 2,3-diaminopyridine
  17. Original Paper
  18. Syntheses of cardanol-based cationic surfactants and their use in emulsion polymerisation
  19. Original Paper
  20. Synthesis of urethane—acrylic multi-block copolymers via electrochemically mediated ATRP
  21. Original Paper
  22. Diazene sulphonate as a cross-linking agent for polymers with pendant triarylamine hole-conducting units
  23. Original Paper
  24. Leaching test for calcined kaolinite and kaolinite/TiO2 photoactive composite
  25. Original Paper
  26. Chitosan sponge matrices with β-cyclodextrin for berberine loadinging
  27. Original Paper
  28. Ageing of plasticized poly(lactic acid)/poly(β-hydroxybutyrate) blend films under artificial UV irradiation and under real agricultural conditions during their application as mulches
  29. Original Paper
  30. Synthesis, in-vitro cytotoxicity of 4H-benzo[h]chromene derivatives and structure–activity relationships of 4-aryl group and 3-, 7-positions
  31. Original Paper
  32. Chemoselective synthesis of 1,2-disubstituted benzimidazoles in lactic acid without additive
  33. Original Paper
  34. Sorption properties of sheep wool irradiated by accelerated electron beam
Downloaded on 28.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0053/html?lang=en
Scroll to top button