Home Ageing of plasticized poly(lactic acid)/poly(β-hydroxybutyrate) blend films under artificial UV irradiation and under real agricultural conditions during their application as mulches‡
Article
Licensed
Unlicensed Requires Authentication

Ageing of plasticized poly(lactic acid)/poly(β-hydroxybutyrate) blend films under artificial UV irradiation and under real agricultural conditions during their application as mulches

  • Katarína Mosnáčková EMAIL logo , Alena Šišková , Ivica Janigová , Jozef Kollár , Miroslav Šlosár , Štefan Chmela , Pavol Alexy , Ivan Chodák , Ján Bočkaj and Jaroslav Mosnáček
Published/Copyright: March 31, 2016
Become an author with De Gruyter Brill

Abstract

The paper is aimed on the investigation of natural ageing of plasticized poly(lactic acid)/poly(β-hydroxybutyrate) PLA/PHB blend films during their one-season application as mulches under real field conditions in the western part of Slovakia. Acetyl tributyl citrate (ATBC) was used as the plasticizer. The analysis was performed on three differently exposed parts of the foil: i) buried in soil, ii) exposed to sunlight, and iii) shadowed by plants. In parallel, UV irradiation of the blend under laboratory controlled conditions (constant temperature of 30°C and relative humidity of 55 %) was carried out. The degradation effect was followed by changes in the molar mass, chemical and crystalline structures, as well as in thermal and mechanical properties. The ternary PLA/PHB/ATBC blend lost its tensile properties faster when buried in soil than when exposed to sunlight. This result is in agreement with the data obtained for the UV-irradiated materials. Young’s modulus values showed a significant mechanical degradation under the UV irradiation as well as during natural ageing. The study was also focused on the influence of mulches on the yield and quality of sweet pepper production, characterized by carotenoids and vitamin C content.


Presented at the 6th International Conference on Polymeric materials in Automotive – PMA 2015 and 22nd Slovak Rubber Conference 2015, Bratislava, Slovakia, 26–28 May 2015

Acknowledgements

The authors thank for financial support provided by the European Regional Development Fund through the Hungary–Slovakia Cross-Border Cooperation Program 2007–2013 (HUSK/1101/1.2.1/0209). The research was also supported by project VEGA 2/0167/14 (Slovakia).

References

Abdelwahab, M. A., Flynn, A., Chiou, B. S., Imam, S., Orts, W., & Chiellini, E. (2012). Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polymer Degradation and Stability, 97, 1822–1828. DOI: 10.1016/j.polymdegradstab.2012.05.036.10.1016/j.polymdegradstab.2012.05.036.">10.1016/j.polymdegradstab.2012.05.036Search in Google Scholar

Alexy, P., Chodák, I., Bakoš, D., Bugaj, P., Pavlačková, M., Tomanová, K., Benovič, F., Plavec, R., Mihalík, M., & Botošová, M. (2012). Patent No. WO 2012/141660 A1. Geneva, Switzerland: World Intellectual Property Organization.Search in Google Scholar

Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., Jiménez, A., Yoon, K., Ahn, J., Kang, S., & Kenny, J. M. (2015). Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polymer Letters, 9, 583–596. DOI: 10.3144/expresspolymlett.2015.55.10.3144/expresspolymlett.2015.55.">10.3144/expresspolymlett.2015.55Search in Google Scholar

Arrieta, M. P., López, J., Rayón, E., & Jiménez, A. (2014). Disintegrability under composting conditions of plasticized PLA–PHB blends. Polymer Degradation and Stability, 108, 307–318. DOI: 10.1016/j.polymdegradstab.2014.01.034.10.1016/j.polymdegradstab.2014.01.034.">10.1016/j.polymdegradstab.2014.01.034Search in Google Scholar

Borská, K., Danko, M., & Mosnáček, J. (2014). Photodegradation and photochemical crosslinking of polylactide. Chemické Listy, 108, 1030–1039. (in Slovak)Search in Google Scholar

Chodak, I. (2002). Polyhydroxyalkanoates: Properties and modification for high volume applications. In G. Scott (Ed.), Degradable polymers (2nd ed., pp. 295–319). Dordrecht, The Netherlands: Springer. DOI: 10.1007/978-94-017-1217-0 9.10.1007/978-94-017-1217-0 9">10.1007/978-94-017-1217-0 9Search in Google Scholar

Chodak, I. (2008). Polyhydroxyalkanoates: Origin, properties and applications. In M. N. Belgacem, & A. Gandini (Eds.), Monomer, polymers and composites from renewable resources (pp. 451–477). Oxford, UK: Elsevier.10.1016/B978-0-08-045316-3.00022-3Search in Google Scholar

de Koning, G. J. M., & Lemstra, P. J. (1993). Crystallization phenomena in bacterial poly[(R)-3-hydroxybutyrate]: 2. Embrittlement and rejuvenation. Polymer, 34, 4089–4094. DOI: 10.1016/0032-3861(93)90671-v.10.1016/0032-3861(93)90671-v.">10.1016/0032-3861(93)90671-vSearch in Google Scholar

Dilara, P. A., & Briassoulis, D. (1998). Standard testing methods for mechanical properties and degradation of low density polyethylene (LDPE) film used as greenhouse covering materials: a critical evaluation. Polymer Testing, 17, 549–585. DOI: 10.1016/s0142-9418(97)00074-3.10.1016/s0142-9418(97)00074-3.">10.1016/s0142-9418(97)00074-3Search in Google Scholar

Dong, H. G., Liu, T., Han, Z. Q., Sun, Q. M., & Li, R. (2015). Determining time limits of continuous film mulching and examining residual effects on cotton yield and soil properties. Journal of Environmental Biology, 36, 677–684.Search in Google Scholar

Gorrasi, G., Milone, C., Piperopoulos, E., Lanza, M., & Sorrentino, A. (2013). Hybrid clay mineral-carbon nanotubePLA nanocompostie films. Preparation and photodegradation effect on their mechanical, thermal and electrical properties. Applied Clay Science, 71, 49–54. DOI: 10.1016/j.clay. 2012.11.004.10.1016/j.clay. 2012.11.004.">10.1016/j.clay. 2012.11.004Search in Google Scholar

Hegedüsová, A., Musilová, J., Jomová, K., Hegedüs, O., & Bystrická, J. (2007). Laboratórne experiment z organ-ickej chémie a biochémie pre špecializáciu Chémia životného prostredia (pp. 103). Nitra, Slovakia: Constantine the Philosopher University in Nitra. (in Slovak)Search in Google Scholar

Janigová, I., Lacík, I., & Chodák, I. (2002). Thermal degradation of plasticized poly(3-hydroxybutyrate) investigated by DSC. Polymer Degradation and Stability, 77, 35–41. DOI: 10.1016/s0141-3910(02)00077-0.10.1016/s0141-3910(02)00077-0.">10.1016/s0141-3910(02)00077-0Search in Google Scholar

Li, C., Moore-Kucera, J., Lee, J., Corbin, A., Brodhagen, M., Miles, C., & Inglis, D. (2014). Effects of biodegradable mulch on soil quality. Applied Soil Ecology, 79, 59–69. DOI: 10.1016/j.apsoil.2014.02.012.10.1016/j.apsoil.2014.02.012.">10.1016/j.apsoil.2014.02.012Search in Google Scholar

Lunt, J. (1998). Large-scale production, properites and commercial applicatinos of polylactic acid polymers. Polymer Degradation and Stability, 59, 145–152. DOI: 10.1016/s0141-3910(97)00148-1.10.1016/s0141-3910(97)00148-1.">10.1016/s0141-3910(97)00148-1Search in Google Scholar

Lyu, S. P., Schley, J., Loy, B., Lind, D., Hobot, C., Sparer, R., & Untereker, D. (2007). Kinetics and time–temperature equivalence of polymer degradation. Biomacromolecules, 8, 2301–2310. DOI: 10.1021/bm070313n.10.1021/bm070313n.">10.1021/bm070313nSearch in Google Scholar

Ma, H., Mei, X. R., Yan, C. R., He, W. Q., & Li, K. (2008). The residue of mulching plastic film of cotton field in North China. Journal of Agro-Environment Science, 2008, 570–573.Search in Google Scholar

Mueller, R. J. (2006). Biological degradation of synthetic polyesters—Enzymes as potential catalysts for polyester recycling. Process Biochemistry, 41, 2124–2128. DOI: 10.1016/j.procbio.2006.05.018.10.1016/j.procbio.2006.05.018.">10.1016/j.procbio.2006.05.018Search in Google Scholar

Navarro, J. M., Flores, P., Garrido, C., & Martinez, V. (2006). Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chemistry, 96, 66–73. DOI: 10.1016/j.foodchem.2005.01.057.10.1016/j.foodchem.2005.01.057.">10.1016/j.foodchem.2005.01.057Search in Google Scholar

Oliveira, L. M., Araújo, E. S., & Guedes, S. M. L. (2006). Gamma irradiation effects on poly(hydroxybutyrate). Polymer Degradation and Stability, 91, 2157–2162. DOI: 10.1016/j.polymdegradstab.2006.01.008.10.1016/j.polymdegradstab.2006.01.008.">10.1016/j.polymdegradstab.2006.01.008Search in Google Scholar

Polláková, N., & Šimanský, V. (2015). Physical properties of urban soil in the campus of Slovak University of Agriculture Nitra. Acta Fytotechnica et Zootechnica, 18, 30–35. DOI:10.15414/afz.2015.18.02.30–35.10.15414/afz.2015.18.02.30–35.">10.15414/afz.2015.18.02.30–35Search in Google Scholar

Sadi, R. K., Fechine, G. J. M., & Demarquette, N. R. (2010). Photodegradation of poly(3-hydroxybutyrate). Polymer Degradation and Stability, 95, 2318–2327. DOI: 10.1016/j.polymdegradstab.2010.09.00310.1016/j.polymdegradstab.2010.09.003">10.1016/j.polymdegradstab.2010.09.003Search in Google Scholar

Scandola, M., Ceccorulli, G., & Pizzoli, M. (1989). The physical aging of bacterial poly(D-β-hydroxybutyrate). Macromolecular Rapid Communications, 10, 47–50. DOI: 10.1002/marc. 1989.030100201.10.1002/marc. 1989.030100201.">10.1002/marc. 1989.030100201Search in Google Scholar

Shimao, M. (2001). Biodegradation of plastics. Current Opinion in Biotechnology, 12, 242–247. DOI: 10.1016/s0958-1669(00)00206-8.10.1016/s0958-1669(00)00206-8.">10.1016/s0958-1669(00)00206-8Search in Google Scholar

Stan, M., Soran, M. L., & Marutoiu, C. (2014). Extraction and HPLC determination of the ascorbic acid content of three indigenous spice plants. Journal of Analytical Chemistry, 69, 998–1002. DOI: 10.1134/s106193481410013x.10.1134/s106193481410013x.">10.1134/s106193481410013xSearch in Google Scholar

Slovak Office of Standards, Metrology and Testing (1997). ISO standard: Plastics. Determination of tensile properties. Part 3: Test conditions for films and sheets. STN EN ISO 527-3. Bratislava, Slovakia.Search in Google Scholar

Šlosár, M., & Uher, A. (2013). Fertilization and phytochemicals in broccoli and cauliflower: Impact of nitrogen and sulphur fertilization to the content of phytochemicals in broccoli and cauliflower (pp. 121). Saarbrücken, Germany: Lambert Academic Publishing.Search in Google Scholar

Špitalský, Z., Lacík, I., Lathová, E., Janigová, I., & Chodák, I. (2006). Controlled degradation of polyhydroxybutyrate via alcoholysis with ethylene glycol or glycerol. Polymer Degradation and Stability, 91, 856–861. DOI: 10.1016/j. polymdegradstab.2005.06.019.10.1016/j. polymdegradstab.2005.06.019.">10.1016/j. polymdegradstab.2005.06.019Search in Google Scholar

Tokiwa, Y., & Jarerat, A. (2004). Biodegradation of poly(L-lactide). Biotechnology Letters, 26, 771–777. DOI: 10.1023/ b:bile.0000025927.31028.e3.10.1023/ b:bile.0000025927.31028.e3.">10.1023/ b:bile.0000025927.31028.e3Search in Google Scholar

Wang, S. A., Ma, P. M., Wang, R. Y., Wang, S. F., Zhang, Y., & Zhang, Y. X. (2008). Mechanical, thermal and degradation properties of poly(d, l-lactide)/poly(hydroxybutyrate-co-hydroxyvalerate)/poly(ethylene glycol)blend. Polymer Degradation and Stability, 93, 1364–1369. DOI: 10.1016/j. polymdegradstab.2008.03.026.10.1016/j. polymdegradstab.2008.03.026.">10.1016/j. polymdegradstab.2008.03.026Search in Google Scholar

Wei, L. Q., Liang, S. B., & McDonald, A. G. (2015). Thermophysical properties and biodegradation behavior of green composites made from polyhydroxybutyrate and potato peel waste fermentation residue. Industrial Crops and Products, 69, 91–103. DOI: 10.1016/j.indcrop.2015.02.011.10.1016/j.indcrop.2015.02.011.">10.1016/j.indcrop.2015.02.011Search in Google Scholar

Weng, Y. X., Wang, X. L., & Wang, Y. Z. (2011). Biodegradation behavior of PHAs with different chemical structures under controlled composting conditions. Polymer Testing, 30, 372–380. DOI: 10.1016/j.polymertesting.2011.02.001.10.1016/j.polymertesting.2011.02.001.">10.1016/j.polymertesting.2011.02.001Search in Google Scholar

Received: 2015-10-5
Revised: 2015-12-18
Accepted: 2015-12-23
Published Online: 2016-3-31
Published in Print: 2016-9-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Review
  2. Plant extracts as “green” corrosion inhibitors for steel in sulphuric acid
  3. Original Paper
  4. Use of 6-O-mono-substituted derivatives of β-cyclodextrin-bearing substituent with two permanent positive charges in capillary electrophoresis
  5. Original Paper
  6. Development of ICP-MS and ICP-OES methods for determination of gadolinium in samples related to hospital waste water treatment
  7. Original Paper
  8. Alkyl glycosides as potential anti-Candida albicans growth agents
  9. Original Paper
  10. Preparation of corn stalk-based adsorbents and their specific application in metal ions adsorption
  11. Original Paper
  12. Treatment of metal-plating waste water by modified direct contact membrane distillation
  13. Original Paper
  14. Influence of pH and cationic surfactant on stability and interfacial properties of algerian bitumen emulsion
  15. Original Paper
  16. Synthesis, structural and spectroscopic properties of asymmetric schiff bases derived from 2,3-diaminopyridine
  17. Original Paper
  18. Syntheses of cardanol-based cationic surfactants and their use in emulsion polymerisation
  19. Original Paper
  20. Synthesis of urethane—acrylic multi-block copolymers via electrochemically mediated ATRP
  21. Original Paper
  22. Diazene sulphonate as a cross-linking agent for polymers with pendant triarylamine hole-conducting units
  23. Original Paper
  24. Leaching test for calcined kaolinite and kaolinite/TiO2 photoactive composite
  25. Original Paper
  26. Chitosan sponge matrices with β-cyclodextrin for berberine loadinging
  27. Original Paper
  28. Ageing of plasticized poly(lactic acid)/poly(β-hydroxybutyrate) blend films under artificial UV irradiation and under real agricultural conditions during their application as mulches
  29. Original Paper
  30. Synthesis, in-vitro cytotoxicity of 4H-benzo[h]chromene derivatives and structure–activity relationships of 4-aryl group and 3-, 7-positions
  31. Original Paper
  32. Chemoselective synthesis of 1,2-disubstituted benzimidazoles in lactic acid without additive
  33. Original Paper
  34. Sorption properties of sheep wool irradiated by accelerated electron beam
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0043/html?lang=en
Scroll to top button