Startseite Optimisation of microwave-assisted extraction from Phyllanthus amarus for phenolic compounds-enriched extracts and antioxidant capacity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Optimisation of microwave-assisted extraction from Phyllanthus amarus for phenolic compounds-enriched extracts and antioxidant capacity

  • Van T. Nguyen EMAIL logo , Michael C. Bowyer , Ian A. van Altena und Christopher J. Scarlett EMAIL logo
Veröffentlicht/Copyright: 2. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Phyllanthus amarus is known as a healing herb which has traditionally been used in the treatment of various diseases such as hepatitis, diabetes and cancer. The extraction parameters have great effects on the extraction efficiency of bioactive compounds and pharmacological activity of the extracts. This study sought to optimise the microwave-assisted extraction parameters for phenolic compounds-enriched extracts and antioxidant capacity from P. amarus using response surface methodology (RSM). The results showed that the optimal microwave-assisted extraction parameters were an extraction time of 30 min, an irradiation time of 14 s min−1 and a ratio of solvent to sample of 150 mL g−1. The total phenolic content, phenolic extraction efficiency, saponin content, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging capacity, 2,2-diphenyl-1-picryl-hydrazil (DPPH) radical scavenging capacity and ferric reducing antioxidant power of the P. amarus achieved under these optimal parameters were 87.3 mg of gallic acid equivalents (GAE) per gram of dried sample, 69.7 %, 134.9 mg of escin equivalents (EE) per gram of dried sample, 997.8, 604.7 and 437.3 all in mg of trolox equivalents (TE) per gram of dried sample, respectively, which were not significantly different from the predicted values (86.9 mg of GAE per gram of dried sample, 67.3 %, 123.5 mg of EE per gram of dried sample, 1013.3 mg of TE per gram of dried sample, 530.6 mg of TE per gram of dried sample and 423.5 mg of TE per gram of dried sample, respectively). Accordingly, the optimal microwave-assisted extraction parameters of 30 min, 14 s min−1 and 150 mL g−1 are recommended for the extraction of enriched phenolics from P. amarus for potential application in the nutraceutical and pharmaceutical industries.

Acknowledgements

The authors gratefully acknowledge the financial support received from the Ramaciotti Foundation (ES2012/0104) and the University of Newcastle, Faculty of Science and Information Technology. The authors wish to thank the Vietnamese Government through the Vietnam International Education Development-Ministry of Education and Training (Project 911) and the University of Newcastle for awarding a VIED-TUIT scholarship to Van Tang Nguyen. The authors would also like to thank the Centre of Experiment and Practice at Nha Trang University for its mechanical support.

References

Association of Official Analytical Chemists (1998). Official methods of analysis (16th ed.). Washington, DC, USA: AOAC.Suche in Google Scholar

Bai, X. L., Yue, T. L., Yuan, Y. H., & Zhang, H. W. (2010). Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis. Journal of Separation Science, 33, 3751– 3758. DOI: 10.1002/jssc.201000430.10.1002/jssc.201000430Suche in Google Scholar PubMed

Bhuyan, D. J., Vuong, Q. V., Chalmers, A. C., Altena, I. A. V., Bowyer, M. C., & Scarlett, C. J. (2015). Microwave-assisted extraction of Eucalyptus robusta leaf for the optimal yield of total phenolic compounds. Industrial Crops and Products, 69, 290–299. DOI: 10.1016/j.indcrop.2015.02.044.10.1016/j.indcrop.2015.02.044Suche in Google Scholar

Cheok, C. Y., Salman, H. A. K., & Sulaiman, R. (2014). Extraction and quantification of saponins: a review. Food Research International, 59, 16–40. DOI: 10.1016/j.foodres.2014.01.057.10.1016/j.foodres.2014.01.057Suche in Google Scholar

Dahmoune, F., Nayak, B., Moussi, K., Remini, H., & Madani, K. (2015). Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chemistry, 166, 585–595. DOI: 10.1016/j.foodchem.2014.06.066.10.1016/j.foodchem.2014.06.066Suche in Google Scholar PubMed

Hari Kuma, K. B., & Kuttan, R. (2004). Protective effect of an extract of Phyllanthus amarus against radiation-induced damage in mice. Journal of Radiation Research, 45, 133–139. DOI: 10.1269/jrr.45.133.10.1269/jrr.45.133Suche in Google Scholar PubMed

Kha, T. C., Nguyen, M. H., Phan, D. T., Roach, P. D., & Stathopoulos, C. E. (2013). Optimisation of microwave-assisted extraction of Gac oil at different hydraulic pressure, microwave and steaming conditions. International Journal of Food Science and Technology, 48, 1436–1444. DOI: 10.1111/ijfs.12109.10.1111/ijfs.12109Suche in Google Scholar

Kha, T. C., Nguyen, M. H., Roach, P. D., & Stathopoulos, C. E. (2014a). Microencapsulation of Gac oil by spray drying: optimization of wall material concentration and oil load using response surface methodology. Drying Technology, 32, 385– 397. DOI: 10.1080/07373937.2013.829854.10.1080/07373937.2013.829854Suche in Google Scholar

Kha, T. C., Nguyen, M. H., Roach, P. D., & Stathopoulos, C. E. (2014b). Microencapsulation of Gac oil: optimisation of spray drying conditions using response surface methodology. Powder Technology, 264, 298–309. DOI: 10.1016/j.powtec.2014.05.053.10.1016/j.powtec.2014.05.053Suche in Google Scholar

Kwon, J. H., Bélanger, J. M. R., & Paré, J. R. J. (2003). Optimization of microwave-assisted extraction (MAP) for Ginseng components by response surface methodology. Journal of Agricultural and Food Chemistry, 51, 1807–1810. DOI: 10.1021/jf026068a.10.1021/jf026068aSuche in Google Scholar PubMed

Lim, Y. Y., & Murtijaya, J. (2007). Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT - Food Science and Technology, 40, 1664– 1669. DOI: 10.1016/j.lwt.2006.12.013.10.1016/j.lwt.2006.12.013Suche in Google Scholar

Londhe, J. S., Devasagayam, T. P. A., Foo, L. Y., & Ghaskadbi, S. S. (2008). Antioxidant activity of some polyphenol constituents of the medicinal plant Phyllanthus amarus Linn. Redox Report, 13, 199–207. DOI: 10.1179/135100098x308984.10.1179/135100098x308984Suche in Google Scholar

Londhe, J. S., Devasagayam, T. P. A., Foo, L. Y., Shastry, P., & Ghaskadbi, S. S. (2012). Geraniin and amariin, ellagitannins from Phyllanthus amarus, protect liver cells against ethanol induced cytotoxicity. Fitoterapia, 83, 1562–1568. DOI: 10.1016/j.fitote.2012.09.003.10.1016/j.fitote.2012.09.003Suche in Google Scholar PubMed

Maity, S., Chatterjee, S., Variyar, P. S., Sharma, A., Adhikari, S., & Mazumder, S. (2013). Evaluation of antioxidant activity and characterization of phenolic constituents of Phyllanthus amarus root. Journal of Agricultural and Food Chemistry, 61, 3443–3450. DOI: 10.1021/jf3046686.10.1021/jf3046686Suche in Google Scholar PubMed

Nguyen, V. T. (2014). Mass proportion, proximate composition and effects of solvents and extraction parameters on pigment yield from cacao pod shell (Theobroma cacao L.). Journal of Food Processing and Preservation. DOI: 10.1111/jfpp.12360. (in press)10.1111/jfpp.12360Suche in Google Scholar

Nguyen, V. T., Vuong, Q. V., Bowyer, M. C., van Altena, I. A., & Scarlett, C. J. (2015a). Effects of different drying methods on bioactive compound yield and antioxidant capacity of Phyllanthus amarus. Drying Technology, 33, 1006–1017. DOI: 10.1080/07373937.2015.1013197.10.1080/07373937.2015.1013197Suche in Google Scholar

Nguyen, V. T., Pham, H. N. T., Bowyer, M. C., van Altena, I. A., & Scarlett, C. J. (2015b). Evaluating the influence of solvents and novel extraction methods on bioactive compounds and antioxidant capacity from Phyllanthus amarus. Chemical Papers. (in press)10.1515/chempap-2015-0240Suche in Google Scholar

Nguyen, V. T., Bowyer, M. C., Vuong, Q. V., van Altena, I. A., & Scarlett, C. J. (2015c). Phytochemicals and antioxidant capacity of Xao tam phan (Paramignya trimera) root as affected by various solvents and extraction methods. Industrial Crops and Products, 67, 192–200. DOI: 10.1016/j.indcrop.2015.01.051.10.1016/j.indcrop.2015.01.051Suche in Google Scholar

Nguyen, V. T., Vuong, Q. V., Bowyer, M. C., van Altena, I. A., & Scarlett, C. J. (2015d). Microware-assisted extraction for saponins and antioxidant capacity from Xao tam phan (Paramignya trimera) root. Journal of Food Processing and Preservation. (accepted)10.1016/j.indcrop.2015.01.051Suche in Google Scholar

Osbourn, A., Goss, R. J. M., & Field, R. A. (2011). The saponins – polar isoprenoids with important and diverse biological activities. Natural Product Report, 28, 1261–1268. DOI: 10.1039/c1np00015b.10.1039/c1np00015bSuche in Google Scholar PubMed

Patel, J. R., Tripathi, P., Sharma, V., Chauhana, N. S., & Dixit, V. K. (2011). Phyllanthus amarus: ethnomedicinal uses, phytochemistry and pharmacology: a review. Journal of Ethnopharmarcology, 138, 286–313. DOI: 10.1016/j.jep.2011. 09.040.10.1016/j.jep.2011.09.040Suche in Google Scholar PubMed

Poh Hwa, T., Yoke Kqueen, C., Indu Bala, J., & Son, R. (2011). Bioprotective properties of three Malaysia Phyllanthus species: an investigation of the antioxidant and antimicrobial activities. International Food Research Journal, 18, 887–893.Suche in Google Scholar

Roengrit, T., Wannanon, P., Prasertsri, P., Kanpetta, Y., Sripanidkulchai, B. O., & Leelayuwat, N. (2014). Antioxidant and anti-nociceptive effects of Phyllanthus amarus on improving exercise recovery in sedentary men: a randomized crossover (double-blind) design. Journal of the International Society of Sports Nutrition, 11, 9. DOI: 10.1186/1550-2783-11-9.10.1186/1550-2783-11-9Suche in Google Scholar PubMed PubMed Central

Sarin, B., Verma, N., Martín, J. P., & Mohanty, A. (2014). An overview of important ethnomedicinal herbs of Phyllanthus species: present status and future Prospects. The Scientific World Journal, 2014, 839172. DOI: 10.1155/2014/839172.10.1155/2014/839172Suche in Google Scholar PubMed PubMed Central

Sen, A., & Batra, A. (2013). The study of in vitro and in vivo antioxidant activity and total phenolic content of Phyllanthus amarus schum. & thonn.: a medicinally important plant. International Journal of Pharmacy and Pharmaceutical Sciences, 5, 942–947.Suche in Google Scholar

Shokunbi, O. S., & Odetola, A. A. (2008). Gastroprotective and antioxidant activities of Phyllanthus amarus extracts on absolute ethanol-induced ulcer in albino rats. Journal of Medicinal Plants Research, 2(10), 261–267.Suche in Google Scholar

Tan, S. P., Vuong, Q. V., Stathopoulos, C. E., Parks, S. E., & Roach, P. D. (2014). Optimized aqueous extraction of saponins from bitter melon for production of a saponin-enriched bitter melon powder. Journal of Food Science, 79, E1372–E1381. DOI: 10.1111/1750-3841.12514.10.1111/1750-3841.12514Suche in Google Scholar PubMed

Tang, Y. Q., & Sekaran, S. D. (2011). Evaluation of Phyllanthus for its anti-cancer properties. In P. E. Spiess (Ed.), Prostate cancer - from bench to bedside (pp. 305–320). Rijeka, Croatia: InTech. DOI: 10.5772/27296.10.5772/27296Suche in Google Scholar

Tang, Y. Q., Jaganath, I., Manikam, R., & Sekaran, S. D. (2013). Phyllanthus suppresses prostate cancer cell, PC-3, proliferation and induces apoptosis through multiple signalling pathways (MAPKs, PI3K/Akt, NFκB, and hypoxia). Evidence-Based Complementary and Alternative Medicine, 2013, 609581. DOI: 10.1155/2013/609581.10.1155/2013/609581Suche in Google Scholar PubMed PubMed Central

Teng, H., Lee, W. Y., & Choi, Y. H. (2013). Optimization of microwave-assisted extraction for anthocyanins, polyphenols, and antioxidants from raspberry (Rubus coreanus Miq.) using response surface methodology. Journal of Separation Science, 36, 3107–3114. DOI: 10.1002/jssc.201300303.10.1002/jssc.201300303Suche in Google Scholar PubMed

Vuong, Q. V., Stathopoulos, C. E., Golding, J. B., Nguyen, M. H., & Roach, P. D. (2011). Optimum conditions for the water extraction of L-theanine from green tea. Journal of Separation Science, 34, 2468–2474. DOI: 10.1002/jssc.201100401.10.1002/jssc.201100401Suche in Google Scholar PubMed

Vuong, Q. V., Goldsmith, C. D., Dang, T. T., Nguyen, V. T., Bhuyan, D. J., Sadeqzadeh, E., Scarlett, C. J., & Bowyer, M. C. (2014a). Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant capacity from Euphorbia tirucalli using response surface methodology. Antioxidants, 3, 604–617. DOI: 10.3390/antiox3030604.10.3390/antiox3030604Suche in Google Scholar PubMed PubMed Central

Vuong, Q. V., Nguyen, V. T., Thanh, D. T., Bhuyan, D. J., Goldsmith, C. D., Sadeqzadeh, E., Scarlett, C. J., & Bowyer, M. C. (2014b). Optimization of ultrasound-assisted extraction conditions for euphol from the medicinal plant, Euphorbia tirucalli, using response surface methodology. Industrial Crops and Products, 63, 197–202. DOI: 10.1016/j.indcrop.2014.09.057.10.1016/j.indcrop.2014.09.057Suche in Google Scholar

Vuong, Q. V., Hirun, S., Chuen, T. L. K., Goldsmith, C. D., Munro, B., Bowyer, M. C., Chalmers, A. C., Sakoff, J. A., Phillips, P. A., & Scarlett, C. J. (2015). Physicochemical, antioxidant and anti-cancer activity of a Eucalyptus robusta (Sm.) leaf aqueous extract. Industrial Crops and Products, 64, 167–174. DOI: 10.1016/j.indcrop.2014.10.061.10.1016/j.indcrop.2014.10.061Suche in Google Scholar

Wen, Y., Chen, H., Zhou, X., Deng, Q., Zhao, Y., Zhao, C., & Gong, X. (2015). Optimization of microwave-assisted extraction and antioxidant activities of anthocyanins from blackberry using a response surface methodology. RSC Advances, 5, 19686–19695. DOI: 10.1039/c4ra16396f.10.1039/c4ra16396fSuche in Google Scholar

Received: 2015-8-21
Revised: 2015-11-16
Accepted: 2015-11-16
Published Online: 2016-2-2
Published in Print: 2016-6-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Original Paper
  2. A practical approach to non-spectral interferences elimination in inductively coupled plasma optical emission spectrometry
  3. Original Paper
  4. Two 1,8-naphthalimide-based proton-receptor fluorescent probes for pH determination
  5. Original Paper
  6. Fabrication of amperometric cholesterol biosensor based on SnO2 nanoparticles and Nafion-modified carbon paste electrode
  7. Original Paper
  8. Preparation and catalytic performance of quaternary ammonium base resin for methanolysis of natural phosphatidylcholine
  9. Original Paper
  10. Optimisation of microwave-assisted extraction from Phyllanthus amarus for phenolic compounds-enriched extracts and antioxidant capacity
  11. Original Paper
  12. Red clover (Trifolium pratense L.) honey: volatiles chemical-profiling and unlocking antioxidant and anticorrosion capacity
  13. Original Paper
  14. Application of vacuum membrane distillation for concentration of organic solutions
  15. Original Paper
  16. Correlations for mixing energy in processes using Rushton turbine mixer‡
  17. Original Paper
  18. Recovery of Au(III) ions by Au(III)-imprinted hydrogel
  19. Original Paper
  20. Initiation behaviour in hydrogenation of pyrolysis gasoline over presulphided Ni-Mo-Zn/Al2O3 catalyst
  21. Original Paper
  22. Methodology considering surface roughness in UV water disinfection reactors
  23. Original Paper
  24. Comparison of changes of basic parameters of asphalt caused by various additives
  25. Original Paper
  26. Effect of carbon nanotube modification on poly (butylene terephthalate)-based composites
  27. Original Paper
  28. Evaluation of influence of selected metal cations on antioxidant activity of extracts from savory (Satureja hortensis)
  29. Original Paper
  30. Radical-scavenging activity of glutathione, chitin derivatives and their combination
  31. Original Paper
  32. Piroxicam /β-cyclodextrin complex included in cellulose derivatives-based matrix microspheres as new solid dispersion-controlled release formulations
  33. Original Paper
  34. Avobenzone encapsulated in modified dextrin for improved UV protection and reduced skin penetration
  35. Original Paper
  36. Analysis of the dynamics of laser induced plume propagation from liquid matrix using fast photography
  37. Original Paper
  38. OH-initiated oxidation mechanism and kinetics of organic sunscreen benzophenone-3: A theoretical study
Heruntergeladen am 9.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0009/html
Button zum nach oben scrollen