Startseite Lebenswissenschaften Effect of carbon nanotube modification on poly (butylene terephthalate)-based composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of carbon nanotube modification on poly (butylene terephthalate)-based composites

  • Agnieszka Piegat , Anna Jędrzejewska , Robert Peƚech und Iwona Peƚech EMAIL logo
Veröffentlicht/Copyright: 11. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The influence of the chemical modification of carbon nanotubes on the mechanical, thermal and electrical properties of poly(butylene terephthalate)-based composites was investigated. Polymer composites based on poly(butylene terephthalate) were obtained via in situ polymerisation or extrusion. Commercially available multi-walled carbon nanotubes (Nanocyl NC7000) at different loadings (mass %: 0.05, 0.25, 1, 2) were used as fillers. The functionalisation process took place under a chlorine atmosphere followed by a reaction with sodium hydroxide. The effect of carbon nanotube modification was analysed according to the changes in the polymer thermal and mechanical properties. An addition of modified carbon nanotubes in the amount of 0.05 mass % improved the mechanical properties of the composites in terms of both Young’s modulus and tensile strength by 5–10 % and 17–30 % compared with composites with unmodified carbon nanotubes and neat poly(butylene terephthalate), respectively. The in situ method of composite preparation was a more effective technique for enhancing the matrix–filler interactions, although a significantly lower amount of fillers were used than in the extrusion method.

References

Adar, F., & Noether, H. (1985). Raman microprobe spectra of spin-oriented and drawn filaments of poly(ethylene terephthalate). Polymer, 26, 1935-1943. DOI: 10.1016/0032- 3861(85)90171-5.10.1016/0032-3861(85)90171-5Suche in Google Scholar

Al-Omairi, L. M. (2010). Crystallization, mechanical, rheolog- ical and degradation behavior of polytrimethylene tereph- thalate, polybutylene terephthalate and polycarbonate blend. Ph.D. thesis, RMIT University, Melbourne, Australia.Suche in Google Scholar

Bokobza, L., & Zhang, J. (2012). Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. eXPRESS Polymer Letters, 6, 601-608. DOI: 10.3144/ex- presspolymlett.2012.63.10.3144/expresspolymlett.2012.63Suche in Google Scholar

Deng, H., Bilotti, E., Zhang, R., Wang, K., Zhang, Q., Pejs, T., & Fu, Q. (2011). Improving tensile strength and toughness of melt processed polyamide 6/multiwalled carbon nanotube composites by in situ polymerization and filler surface functionalization. Journal of Applied Polymer Science, 120, 133-140. DOI: 10.1002/app.33140.10.1002/app.33140Suche in Google Scholar

De Volder, M. F. L., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon nanotubes: Present and future commercial applications. Science, 339, 535-539. DOI: 10.1126/sci- ence.1222453.10.1126/science.1222453Suche in Google Scholar PubMed

Espinoza-Martinez, A., Avila-Orta, C., Cruz-Delgado, V., Ol- vera-Neria, O., Gonzalez-Torres, J., & Medellin-Rodriguez, F.(2012). Nucleation mechanisms of aromatic polyesters, PET, PBT, and PEN, on single-wall carbon nanotubes: Early nucleation stages. Journal of Nanomaterials, 2012, article ID 189820. DOI: 10.1155/2012/189820.10.1155/2012/189820Suche in Google Scholar

Fiedler, B., Gojny, F. H., Wichmann, M. H. G., Nolte, M. C. M., & Schulte, K. (2006). Fundamental aspects of nanoreinforced composites. Composites Science and Technology, 66, 3115-3125. DOI: 10.1016/j.compscitech.2005.01.014.10.1016/j.compscitech.2005.01.014Suche in Google Scholar

Jancar, J., Douglas, J. F., Starr, F. W., Kumar, S. K., Cas- sagnau, P., Lesser, A. J., Sternstein, S. S., & Buehler, M. J. (2010). Current issues in research on structure-property relationships in polymer nanocomposites. Polymer, 51, 33213343. DOI: 10.1016/j.polymer.2010.04.074.10.1016/j.polymer.2010.04.074Suche in Google Scholar

Jin, S. H., Park, Y. B., & Yoon, K. H. (2007). Rheological and mechanical properties of surface modified multi-walled carbon nanotube-filled PET composite. Composites Science and Technology, 67, 3434-3441. DOI: 10.1016/j.compscitech.2007. 03.013.10.1016/j.compscitech.2007.03.013Suche in Google Scholar

Jung, D. D. B., Bhattacharyya, D., & Easteal, A. J. (2007). Spectroscopic analysis of poly(ethylene naphthalate)-poly (butylene terephthalate) blends. Journal of Applied Polymer Science, 106, 1860-1868. DOI: 10.1002/app.26736.10.1002/app.26736Suche in Google Scholar

Kim, J. Y., Han, S. I., & Kim, S. H. (2007). Crystallization behaviors and mechanical properties of poly(ethylene 2,6-naphthalate)/multiwall carbon nanotube nanocomposites. Polymer Engineering & Science, 47, 1715-1723. DOI: 10.1002/pen.20789.10.1002/pen.20789Suche in Google Scholar

Kim, J. Y. (2009). The effect of carbon nanotube on the physical properties of poly(butylene terephthalate) nanocomposite by simple melt blending. Journal of Applied Polymer Science, 112, 2589-2600. DOI: 10.1002/app.29560.10.1002/app.29560Suche in Google Scholar

Kim, J. Y. (2011). Poly(butylene terephthalate) nanocomposites containing carbon nanotube. In B. Reddy (Ed.), Advances in nanocomposites - synthesis, characterization and industrial applications. (chapter 31, pp. 707-726). Rijeka, Croatia: InTech. DOI: 10.5772/13943.10.5772/13943Suche in Google Scholar

Lau, K. T., & Hui, D. (2002). Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures. Carbon, 40, 1605-1606. DOI: 10.1016/s0008- 6223(02)00157-4.10.1016/S0008-6223(02)00157-4Suche in Google Scholar

Ma, P. C., Siddiqui, N. A., Marom, G., & Kim, J. K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites: Part A: Applied Science and Manufacturing, 41, 1345-1367. DOI: 10.1016/j.compositesa.2010.07.003.10.1016/j.compositesa.2010.07.003Suche in Google Scholar

Mak, C. L., Wong, Y. W., & Chan, W. N. (1998). Application of Raman spectroscopy to determine the strain-level in polybutylene terephthalate (PBT). Polymer Testing, 17, 451-458. DOI: 10.1016/s0142-9418(97)00073-1.10.1016/S0142-9418(97)00073-1Suche in Google Scholar

Pelech, I., Narkiewicz, U., Moszynski, D., & Pełech, R. (2012). Simultaneous purification and functionalization of carbon nanotubes using chlorination. Journal ofMaterials Research, 27, 2368-2374. DOI: 10.1557/jmr.2012.243.10.1557/jmr.2012.243Suche in Google Scholar

Pełech, I., Pelech, R., Narkiewicz, U., Moszynski, D., Jedrze- jewska, A., & Witkowski, B. (2013). Chlorination of carbon nanotubes obtained on the different metal catalysts. Journal of Nanomaterials, 2013, article ID 836281. DOI: 10.1155/2013/836281.10.1155/2013/836281Suche in Google Scholar

Prado, L. A. S. A., Kwiatkowska, M., Funari, S. S., Roslaniec, Z., Broza, G., & Schulte, K. (2010). Studies on morphology and interphase of poly(butylene terephthalate)/carbon nanotubes nanocomposites. Polymer Engineering & Science, 50, 1571-1576. DOI: 10.1002/pen.21689.10.1002/pen.21689Suche in Google Scholar

Prado, L. A. S. A., Kopyniecka, A., Chandrasekaran, S., Broza, G., Roslaniec, Z., & Schulte, K. (2013). Impact of filler func- tionalisation on the crystallinity, thermal stability and mechanical properties of thermoplastic elastomer/carbon nanotube nanocomposites. Macromolecular Materials and Engineering, 298, 359-370. DOI: 10.1002/mame.201200066.10.1002/mame.201200066Suche in Google Scholar

Song, L., & Qiu, Z. (2009). Crystallization behavior and thermal property of biodegradable poly(butylene succi- nate)/functional multi-walled carbon nanotubes nanocomposite. Polymer Degradation and Stability, 94, 632-637. DOI: 10.1016/j.polymdegradstab.2009.01.009.10.1016/j.polymdegradstab.2009.01.009Suche in Google Scholar

Soto, A., Iconomopoulou, S. M., Manikas, A. C., & Voyiatzis, G. A. (2005). Molecular orientation of poly(ethylene terephtha- late) and poly(butylene terephthalate) probed by polarized Raman spectra: A parallel study. Applied Spectroscopy, 59, 1257-1269. DOI: 10.1366/000370205774430882.10.1366/000370205774430882Suche in Google Scholar PubMed

Tzavalas, S., Drakonakis, V., Mouzakis, D. E., Fischer, D., & Gregoriou, V. G. (2006). Effect of carboxy-functionalized multiwall nanotubes (MWNT-COOH) on the crystallization and chain conformations of poly(ethylene terephthalate) PET in PET-MWNT nanocomposites. Macromolecules, 39, 9150-9156. DOI: 10.1021/ma0613584.10.1021/ma0613584Suche in Google Scholar

van Krevelen, D. W. (1997). Properties of polymers: Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions (3rd ed.). Amsterdam, The Netherlands: Elsevier.Suche in Google Scholar

Wagner, H. D. (2011). Raman spectroscopy of polymer-carbon nanotube composites. In T. McNally, & P. Pötschke (Eds.), Polymer-carbon nanotube composites: Preparation, properties and applications (Series: Woodhead publishing in materials, chapter 14, pp. 400-427). Cambridge, UK: Woodhead Publishing. DOI: 10.1533/9780857091390.2.400.10.1533/9780857091390.2.400Suche in Google Scholar

Yang, Y. K., Xie, X. L., & Mai, Y. W. (2011). Function- alization of carbon nanotubes for polymer nanocomposites. In T. McNally, & P. Potschke (Eds.), Polymer-carbon nanotube composites: Preparation, properties and applications (Series: Woodhead publishing in materials, chapter 3, pp. 55-91). Cambridge, UK: Woodhead Publishing. DOI: 10.1533/9780857091390.1.55.10.1533/9780857091390.1.55Suche in Google Scholar

Zhao, C., Hu, G., Justice, R., Schaefer, D. W., Zhang, S., Yang, M., & Han, C. C. (2005). Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer, 46, 5125-5132. DOI: 10.1016/j.polymer.2005.04.065.10.1016/j.polymer.2005.04.065Suche in Google Scholar

Received: 2015-6-15
Revised: 2015-11-10
Accepted: 2015-11-15
Published Online: 2016-2-11
Published in Print: 2016-6-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Original Paper
  2. A practical approach to non-spectral interferences elimination in inductively coupled plasma optical emission spectrometry
  3. Original Paper
  4. Two 1,8-naphthalimide-based proton-receptor fluorescent probes for pH determination
  5. Original Paper
  6. Fabrication of amperometric cholesterol biosensor based on SnO2 nanoparticles and Nafion-modified carbon paste electrode
  7. Original Paper
  8. Preparation and catalytic performance of quaternary ammonium base resin for methanolysis of natural phosphatidylcholine
  9. Original Paper
  10. Optimisation of microwave-assisted extraction from Phyllanthus amarus for phenolic compounds-enriched extracts and antioxidant capacity
  11. Original Paper
  12. Red clover (Trifolium pratense L.) honey: volatiles chemical-profiling and unlocking antioxidant and anticorrosion capacity
  13. Original Paper
  14. Application of vacuum membrane distillation for concentration of organic solutions
  15. Original Paper
  16. Correlations for mixing energy in processes using Rushton turbine mixer‡
  17. Original Paper
  18. Recovery of Au(III) ions by Au(III)-imprinted hydrogel
  19. Original Paper
  20. Initiation behaviour in hydrogenation of pyrolysis gasoline over presulphided Ni-Mo-Zn/Al2O3 catalyst
  21. Original Paper
  22. Methodology considering surface roughness in UV water disinfection reactors
  23. Original Paper
  24. Comparison of changes of basic parameters of asphalt caused by various additives
  25. Original Paper
  26. Effect of carbon nanotube modification on poly (butylene terephthalate)-based composites
  27. Original Paper
  28. Evaluation of influence of selected metal cations on antioxidant activity of extracts from savory (Satureja hortensis)
  29. Original Paper
  30. Radical-scavenging activity of glutathione, chitin derivatives and their combination
  31. Original Paper
  32. Piroxicam /β-cyclodextrin complex included in cellulose derivatives-based matrix microspheres as new solid dispersion-controlled release formulations
  33. Original Paper
  34. Avobenzone encapsulated in modified dextrin for improved UV protection and reduced skin penetration
  35. Original Paper
  36. Analysis of the dynamics of laser induced plume propagation from liquid matrix using fast photography
  37. Original Paper
  38. OH-initiated oxidation mechanism and kinetics of organic sunscreen benzophenone-3: A theoretical study
Heruntergeladen am 28.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0007/pdf
Button zum nach oben scrollen