Startseite A practical approach to non-spectral interferences elimination in inductively coupled plasma optical emission spectrometry
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A practical approach to non-spectral interferences elimination in inductively coupled plasma optical emission spectrometry

  • Anna Krejčová EMAIL logo , Tomáš Černohorský und Lenka Bendakovská
Veröffentlicht/Copyright: 2. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Matrix effects and practical possibilities of reducing accompanying non-spectral interferences in inductively coupled plasma optical emission spectrometry (ICP-OES) were studied for microconcentric Micromist, concentric and V-groove nebulizers (VGN) coupled with two cyclonic spray chambers of different sizes. The effect of a wide scale of interferents and mixtures thereof in the concentration range of up to 2 mass % (Na, Ca, Ba, La, urea) or up to 20 vol. % (nitric acid) on the analysis of Cd, Cu, K, Mg, Mn, Pb and Zn was investigated in terms of their analytical recovery and Mg(II) 280.27 nm/Mg(I) 285.29 nm line intensity ratio. Recoveries of ionic lines were lower than those of atomic lines (37–102 %) depending on the matrix concentration. The Mg(II)/Mg(I) ratios were found to be 12–15 and they slightly decreased as the matrix load increased. Exceptional behavior of pure La matrix, steeply lowering the recoveries and Mg(II)/Mg(I) ratios was observed. A Micromist nebulizer coupled with a small inner volume spray chamber provided the highest recoveries (94–102 %), lowest matrix effects across the matrix loads and, compared to others, the least significant dependence without worsening of the analytical characteristics (recoveries, signal background ratios and the Mg(II)/Mg(I) ratios) across the studied matrices.

Acknowledgements.

he authors are grateful to the SG FCHT 05/2015 project for financial support.


Supplementary data

Supplementary data associated with this article can be found in the online version of this paper (DOI: 10.1515/chempap-2016-0004).


References

Aguirre, M. Á., Kovachov, N., Almagro, B., Hidalgo, M., & Canals, A. (2010). Compensation for matrix effects on ICP-OES by on-line calibration methods using a new multi-nebulizer based on Flow Blurring®technology. Journal of Analytical Atomic Spectrometry, 25, 1724–1732. DOI: 10.1039/c004854b.10.1039/c004854bSuche in Google Scholar

Ardini, F., Grotti, M., Sánchez, R., & Todolí, J. L. (2012). Improving the analytical performances of ICP-AES by using a high-temperature single-pass spray chamber and segmented-injections micro-sample introduction for the analysis of environmental samples. Journal of Analytical Atomic Spectrometry, 27, 1400–1404. DOI: 10.1039/c2ja30152k.10.1039/c2ja30152kSuche in Google Scholar

Bauer, M., & Broekaert, J. A. C. (2007). Investigations on the use of pneumatic cross-flow nebulizers with dual solution loading including the correction of matrix effects in elemental determinations by inductively coupled plasma optical emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 145–154. DOI: 10.1016/j.sab.2007.02.006.10.1016/j.sab.2007.02.006Suche in Google Scholar

Becker, J. S., & Dietze, H. J. (1999). Ultratrace and isotope analysis of long-lived radionuclides by inductively coupled plasma quadrupole mass spectrometry using a direct injection high efficiency nebulizer. Analytical Chemistry, 71, 3077–3084. DOI: 10.1021/ac9900883.10.1021/ac9900883Suche in Google Scholar

Benzo, Z., Maldonado, D., Chirinos, J., Marcano, E., Gómez, C., Quintal, M., & Salas, J. (2009). Evaluation of dual sample introduction systems by comparison of cyclonic spray chambers with different entrance angles for ICP-OES. Microchemical Journal, 93, 127–132. DOI: 10.1016/j.microc.2009.05.009.10.1016/j.microc.2009.05.009Suche in Google Scholar

Borkowska-Burnecka, J., Lésniewicz, A., & Zyrnicki, W. (2006). Comparison of pneumatic and ultrasonic nebulizations in inductively coupled plasma atomic emission spectrometry – matrix effects and plasma parameters. Spectrochimica Acta Part B: Atomic Spectroscopy, 61, 579–587. DOI: 10.1016/j.sab.2006.04.005.10.1016/j.sab.2006.04.005Suche in Google Scholar

Canals, A., Hernandis, V., Todoli, J. L., & Browner, R. F. (1995). Fundamental studies on pneumatic generation and aerosol transport in atomic spectrometry: effect of mineral acids on emission intensity in inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 50, 305–321. DOI: 10.1016/0584-8547(94)00138-l.10.1016/0584-8547(94)00138-lSuche in Google Scholar

Cano, J. M., Todolí, J. L., Hernandis, V., & Mora, J. (2002). The role of the nebulizer on the sodium interferent effects in inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 17, 57–63. DOI: 10.1039/b105077j.10.1039/b105077jSuche in Google Scholar

Chan, G. C. Y., & Hieftje, G. M. (2008a). Warning indicators for the presence of plasma-related matrix effects in inductively coupled plasma-atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 23, 181–192. DOI: 10.1039/b706837a.10.1039/b706837aSuche in Google Scholar

Chan, G. C. Y., & Hieftje, G. M. (2008b). Use of vertically resolved plasma emission as an indicator for flagging matrix effects and system drift in inductively coupled plasma-atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 23, 193–204. DOI: 10.1039/b706838g.10.1039/b706838gSuche in Google Scholar

de Gois, J. S., Maranhăo, T. D. A., Oliveira, F. J. S., Frescura, V. L. A., Curtius, A. J., & Borges, D. L. G. (2012). Analytical evaluation of nebulizers for the introduction of acetic acid extracts aiming at the determination of trace elements by inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 77, 35– 43. DOI: 10.1016/j.sab.2012.08.001.10.1016/j.sab.2012.08.001Suche in Google Scholar

Dubuisson, C., Poussel, E., Todolí, J. L., & Mermet, J. M. (1998). Effect of sodium during the aerosol transport and filtering in inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 53, 593–600. DOI: 10.1016/s0584-8547(98)00084-6.10.1016/s0584-8547(98)00084-6Suche in Google Scholar

Elgersma, J. W., Thuy, D. T., & Groenestein, R. P. (2000). Efficient use of a conventional pneumatic concentric nebulizer in ICP-AES at low liquid uptake rates by applying a desolvation system: determination of detection limits and degrees of acid interferences. Journal of Analytical Atomic Spectrometry, 15, 959–966. DOI: 10.1039/b003250f.10.1039/b003250fSuche in Google Scholar

Grotti, M., Leardi, R., & Frache, R. (2002). Combined effects of inorganic acids in inductively coupled plasma optical emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 57, 1915–1924. DOI: 10.1016/s0584-8547(02)00161-1.10.1016/s0584-8547(02)00161-1Suche in Google Scholar

Iglésias, M., Vaculovic, T., Studynkova, J., Poussel, E., & Mermet, J. M. (2004). Influence of the operating conditions and of the optical transition on non-spectral matrix effects in inductively coupled plasma-atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 59, 1841– 1850. DOI: 10.1016/j.sab.2004.09.007.10.1016/j.sab.2004.09.007Suche in Google Scholar

Krejčová, A., Černohorský, T., & Čurdová, E. (2001). Determination of sodium, potassium, magnesium and calcium in urine by inductively coupled plasma atomic emission spectrometry. The study of matrix effects. Journal of Analytical Atomic Spectrometry, 16, 1002–1005. DOI: 10.1039/b101941o.10.1039/b101941oSuche in Google Scholar

Krejčová, A., & Černohorský, T. (2003). Comparision of methods used for elimination of matrix effect in ICP-AES. Scientific Papers of the University of Pardubice series A, 173–186.Suche in Google Scholar

Lehn, S. A., Warner, K. A., Huang, M., & Hieftje, G. M. (2003). Effect of sample matrix on the fundamental properties of the inductively coupled plasma. Spectrochimica Acta Part B: Atomic Spectroscopy, 58, 1785–1806. DOI: 10.1016/s0584-8547(03)00159-9.10.1016/s0584-8547(03)00159-9Suche in Google Scholar

Lide, D. R. (2003). CRC handbook of chemistry and physics. Section 10: Atomic, molecular, and optical physics; ionization potentials of atoms and atomic ions (84th ed.). Boca Raton, FL, USA: CRC Press.Suche in Google Scholar

Maestre, S., Mora, J., & Todolí, J. L. (2002). Studies about the origin of the non-spectroscopic interferences caused by sodium and calcium in inductively coupled plasma atomic emission spectrometry. Influence of the spray chamber design. Spectrochimica Acta Part B: Atomic Spectroscopy, 57, 1753–1770. DOI: 10.1016/s0584-8547(02)00141-6.10.1016/s0584-8547(02)00141-6Suche in Google Scholar

Maestre, S. E., Todolí, J. L., & Mermet, J. M. (2004). Evaluation of several pneumatic micronebulizers with different designs for use in ICP–AES and ICP–MS. Future directions for further improvement. Analytical and Bioanalytical Chemistry, 379, 888–899. DOI: 10.1007/s00216-004-2664-4.10.1007/s00216-004-2664-4Suche in Google Scholar PubMed

Matusiewicz, H., Ślachciński, M., Hidalgo, M., & Canals, A. (2007). Evaluation of various nebulizers for use in microwave induced plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 22, 1174–1178. DOI: 10.1039/b704612j.10.1039/b704612jSuche in Google Scholar

Mora, J., Maestre, S., Hernandis, V., & Todolí, J. L. (2003). Liquid-sample introduction in plasma spectrometry. Trends in Analytical Chemistry, 22, 123–131. DOI: 10.1016/s0165-9936(03)00301-7.10.1016/s0165-9936(03)00301-7Suche in Google Scholar

Packer, A. P., & Mattiazzo, M. E. (2007). Influence of organic and inorganic acids commonly used in soil extraction and digestion procedures in the determination of elements by inductively coupled plasma optical emission spectrometry. Atomic Spectroscopy, 28, 129–136.Suche in Google Scholar

Paredes, E., Maestre, S. E., & Todolí, J. L. (2006). Use of stirred tanks for studying matrix effects caused by inorganic acids, easily ionized elements and organic solvents in inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 61, 326–339. DOI: 10.1016/j.sab.2006.03.005.10.1016/j.sab.2006.03.005Suche in Google Scholar

Rončević, S., & Pitarević Svedružić, L. (2012). Evaluation of matrix effects of polycarboxylic acid introduction in inductively coupled plasma atomic emission spectrometry (ICP-AES). Croatica Chemica Acta, 85, 311–317. DOI: 10.5562/cca2066.10.5562/cca2066Suche in Google Scholar

Silva, F. V., Trevizan, L. C., Silva, C. S., Nogueira, A. R. A., & Nóbrega, J. A. (2002). Evaluation of inductively coupled plasma optical emission spectrometers with axially and radially viewed configurations. Spectrochimica Acta Part B: Atomic Spectroscopy, 57, 1905–1913. DOI: 10.1016/s0584-8547(02)00176-3.10.1016/s0584-8547(02)00176-3Suche in Google Scholar

Stepan, M., Musil, P., Poussel, E., & Mermet, J. M. (2001). Matrix-induced shift effects in axially viewed inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 56, 443–453. DOI: 10.1016/s0584-8547(01)00171-9.10.1016/s0584-8547(01)00171-9Suche in Google Scholar

Stewart, I. I., & Olesik, J. W. (1998). Steady state acid effects in ICP-MS. Journal of Analytical Atomic Spectrometry, 13, 1313–1320. DOI: 10.1039/a806040a.10.1039/a806040aSuche in Google Scholar

Todolí, J. L., & Mermet, J. M. (1999). Acid interferences in atomic spectrometry: analyte signal effects and subsequent reduction. Spectrochimica Acta Part B: Atomic Spectroscopy, 54, 895–929. DOI: 10.1016/s0584-8547(99)00041-5.10.1016/s0584-8547(99)00041-5Suche in Google Scholar

Todolí, J. L., Hernandis, V., Canals, A., & Mermet, J. M. (1999). Comparison of characteristics and limits of detection of pneumatic micronebulizers and a conventional nebulizer operating at low uptake rates in ICP-AES. Journal of Analytical Atomic Spectrometry, 14, 1289–1295. DOI: 10.1039/a900598f.10.1039/a900598fSuche in Google Scholar

Todolí, J. S., & Mermet, J. M. (2001). Evaluation of a direct injection high-efficiency nebulizer (DIHEN) by comparison with a high-efficiency nebulizer (HEN) coupled to a cyclonic spry chamber as a liwuid sample introduction system for ICP-AES. Journal of Analytical Atomic Spectrometry, 16, 514–520. DOI: 10.1039/b009430g.10.1039/b009430gSuche in Google Scholar

Todolí, J. L., Gras, L., Hernandis, V., & Mora, J. (2002). Elemental matrix effects in ICP-AES. Journal of Analytical Atomic Spectrometry, 17, 142–169. DOI: 10.1039/b009570m.10.1039/b009570mSuche in Google Scholar

Todolí, J. L., Maestre, S. E., & Mermet, J. M. (2004). Compensation for matrix effects in ICP-AES by using air segmented liquid microsample introduction. The role of the spray chamber. Journal of Analytical Atomic Spectrometry, 19, 728–737. DOI: 10.1039/b317082a.10.1039/b317082aSuche in Google Scholar

Tripković, M. R., & Holclajtner-Antunović, I. D. (1993). Study of the matrix effect of easily and non-easily ionizable elements in an inductively coupled argon plasma. Part 1. Spectroscopic diagnostics. Journal of Analytical Atomic Spectrometry, 8, 349–357. DOI: 10.1039/ja9930800349.10.1039/ja9930800349Suche in Google Scholar

Vanhaecke, F., van Holderbeke, M., Moens, L., & Dams, R. (1996). Evaluation of a commercially available microconcentric nebulizer for inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 11, 543– 548. DOI: 10.1039/ja9961100543.10.1039/ja9961100543Suche in Google Scholar

Received: 2015-8-10
Revised: 2015-11-12
Accepted: 2015-11-14
Published Online: 2016-2-2
Published in Print: 2016-6-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Original Paper
  2. A practical approach to non-spectral interferences elimination in inductively coupled plasma optical emission spectrometry
  3. Original Paper
  4. Two 1,8-naphthalimide-based proton-receptor fluorescent probes for pH determination
  5. Original Paper
  6. Fabrication of amperometric cholesterol biosensor based on SnO2 nanoparticles and Nafion-modified carbon paste electrode
  7. Original Paper
  8. Preparation and catalytic performance of quaternary ammonium base resin for methanolysis of natural phosphatidylcholine
  9. Original Paper
  10. Optimisation of microwave-assisted extraction from Phyllanthus amarus for phenolic compounds-enriched extracts and antioxidant capacity
  11. Original Paper
  12. Red clover (Trifolium pratense L.) honey: volatiles chemical-profiling and unlocking antioxidant and anticorrosion capacity
  13. Original Paper
  14. Application of vacuum membrane distillation for concentration of organic solutions
  15. Original Paper
  16. Correlations for mixing energy in processes using Rushton turbine mixer‡
  17. Original Paper
  18. Recovery of Au(III) ions by Au(III)-imprinted hydrogel
  19. Original Paper
  20. Initiation behaviour in hydrogenation of pyrolysis gasoline over presulphided Ni-Mo-Zn/Al2O3 catalyst
  21. Original Paper
  22. Methodology considering surface roughness in UV water disinfection reactors
  23. Original Paper
  24. Comparison of changes of basic parameters of asphalt caused by various additives
  25. Original Paper
  26. Effect of carbon nanotube modification on poly (butylene terephthalate)-based composites
  27. Original Paper
  28. Evaluation of influence of selected metal cations on antioxidant activity of extracts from savory (Satureja hortensis)
  29. Original Paper
  30. Radical-scavenging activity of glutathione, chitin derivatives and their combination
  31. Original Paper
  32. Piroxicam /β-cyclodextrin complex included in cellulose derivatives-based matrix microspheres as new solid dispersion-controlled release formulations
  33. Original Paper
  34. Avobenzone encapsulated in modified dextrin for improved UV protection and reduced skin penetration
  35. Original Paper
  36. Analysis of the dynamics of laser induced plume propagation from liquid matrix using fast photography
  37. Original Paper
  38. OH-initiated oxidation mechanism and kinetics of organic sunscreen benzophenone-3: A theoretical study
Heruntergeladen am 9.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0004/html
Button zum nach oben scrollen