Self-assembly hydrogen-bonded supramolecular arrays from copper(II) halogenobenzoates with nicotinamide:Structure and EPR spectra‡
-
Halaška Jozef
, Čechová Danica , Michael K. Lawson , Zdeňka Růžičková , Vladimír Jorík , Marian Koman , Marian Valko , Bojan Kozlevčar and Ján Moncol
Nicotinamide was employed as a supramolecular reagent in the synthesis of six new copper(II) bromo-, iodo-, fluoro- and dibromobenzoate complexes. Structures of [Cu(2-Brbz)2(nia)2(H2O)2] (I), [Cu(2-Ibz)2(nia)2(H2O)2] (II), [Cu(2-Fbz)2(nia)2(H2O)2] (III), [Cu(4-Brbz)2(nia)2(H2O)2](IV), [Cu(3,5-Br2 bz)2(nia)2(H2O)2] (V), [Cu(F-Fbz)2(nia)2(H2O)] · H2O (VI) (nia = nicotinamide, 2-Brbz = 2-bromobenzoate, 4-Brbz = 4-bromobenzoate, 3,5-Br2 bz = 3,5-dibromobenzoate, 2-Ibz = 2-iodobenzoate, 2-Fbz = 2-fluorobenzoate, 4-Fbz = 4-fluorobenzoate) were determined using X-ray analysis. Compound [Cu(2-Brbz)2(nia)2] · 2H2O (VII) was prepared by a new method and also characterized by X-ray powder diffraction and EPR spectroscopy. Compounds I–V are monomeric complexes with a square-bipyramidal coordination sphere around the Cu2+ ion. Complex VI is monomeric with coordination environment around the Cu2+ ion of a tetragonal-pyramid. Complexes I and VII present examples of coordination isomerism. Molecules of all compounds are connected by N—H· · ·O and O—H·· ·O hydrogen bonds from the NH2 groups of nicotinamide and water molecules which create supramolecular hydrogen-bonding-coordination chains and networks.·c 2015 Institute of Chemistry, Slovak Academy of Sciences
‡Presented at the XXV. International Conference on Coordination and Bioinorganic Chemistry, Smolenice, Slovakia, 31 May–5 June 2015.
Acknowledgements.
Slovak grant agencies VEGA (VEGA 1/0388/14, VEGA 1/0765/14) and APVV (APVV-14-0078)are acknowledged for financial support.
Supplementary data
Supplementary data associated with this article can be found in the online version of this paper (DOI: 10.1515/chempap-2015-0203). Crystallographic data (excluding structure factors) for structures I–VI reported in this paper have been deposited with the Cambridge Crystallographic Data Centre, CCDC nos. 910178, 910179, 1013567, 910180, 910181and 1026303. Copies of the information may be obtained free of charge from: The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223-336033; e-mail: deposit@ccdc.cam.ac.uk) or via http://www.ccdc.cam.ac.uk/data request/cif.
References
Aakeröy, C. B., Schultheiss, N., & Desper, J. (2005). Directed supramolecular assembly of inffnite 1-D M(II)-containing chains (M = Cu, Co, Ni) using structurally bifunctional ligands. Inorganic Chemistry, 44, 4983–4991. DOI: 10.1021/ic048405y.10.1021/ic048405ySearch in Google Scholar
Aakeröy, C. B., Desper, J., Levin, B., & Valdés-Martínez, J. (2006). Robust building blocks for inorganic crystal engineering. Inorganica Chimica Acta, 359, 1255–1262. DOI: 10.1016/j.ica.2005.09.051.10.1016/j.ica.2005.09.051Search in Google Scholar
Aakeröy, C. B., Scott, B. M. T., Smith, M. M., Urbina, J. F., & Desper, J. (2009). Establishing amide·· ·amide reliability and synthon transferability in the supramolecular assembly of metal-containing one-dimensional architectures. Inorganic Chemistry, 48, 4052–4061. DOI: 10.1021/ic801992t.10.1021/ic801992tSearch in Google Scholar
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J., & Verchoor, G. C. (1984). Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-21 -yl)-2,6dithiaheptane]copper(II) perchlorate. Journal of the Chemical Society, Dalton Transactions, 1984, 1349–1356. DOI: 10.1039/dt9840001349.10.1039/dt9840001349Search in Google Scholar
Arıcı, M., Yeşilel, O. Z., Şahin, O., & Büyükgüngör, O. (2014). Two dimensional coordination polymers with 3,31 thiodipropionate: An unprecedented coordination mode and strong hydrogen-bond network. Polyhedron, 67, 456–463. DOI: 10.1016/j.poly.2013.09.040.10.1016/j.poly.2013.09.040Search in Google Scholar
Beatty, A. M. (2001). Hydrogen bonded networks of coordination complexes. CrystEngComm, 3, 243–255. DOI: 10.1039/b109127c.10.1039/b109127cSearch in Google Scholar
Beatty, A. M. (2003). Open-framework coordination complexes from hydrogen-bonded networks: toward host/guest complexes. Coordination Chemistry Reviews, 246, 131–143. DOI: 10.1016/s0010-8545(03)00120-6.10.1016/s0010-8545(03)00120-6Search in Google Scholar
Beobide, G., Castillo, O., Cepeda, J., Luque, A., PérezYáñez, S., Román, P., & Thomas-Gipson, J. (2013). Metal– carboxylato–nucleobase systems: From supramolecular assemblies to 3D porous materials. Coordination Chemistry Reviews, 257, 2716–2736. DOI: 10.1016/j.ccr.2013.03.011.10.1016/j.ccr.2013.03.011Search in Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L., & Chang, N. L. (1995). Patterns in hydrogen bonding: Functionality and graph set analysis in crystals. Angewandte Chemie Internation Edition in English, 34, 1555–1573. DOI: 10.1002/anie.199515551.10.1002/anie.199515551Search in Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K., & Watkin, D. J. (2003). CRYSTALS version 12: software for guided crystal structure analysis. Journal of Applied Crystallography, 36, 1487. DOI: 10.1107/s0021889803021800.10.1107/s0021889803021800Search in Google Scholar
Boultif, A., & Lour, D. (2004). Powder pattern indexing with the dichotomy method. Journal of Applied Crystallography, 37, 724–731. DOI: 10.1107/s0021889804014876.10.1107/s0021889804014876Search in Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori G., & Spagna, R. (2012). SIR2011: a new package for crystal structure determination and reffnement. Journal of Applied Crystallography, 45, 357–361. DOI: 10.1107/s0021889812001124.10.1107/s0021889812001124Search in Google Scholar
Đaković, M., Popović, Z., Giester, G., & Rajić-Linarić, M. (2008). Synthesis, spectroscopic and structural investigation of Zn(NCS)2 (nicotinamide)2 and [Hg(SCN)2 (nicotinamide)]n . Polyhedron, 27, 465–472. DOI: 10.1016/j.poly.2007.09.036.10.1016/j.poly.2007.09.036Search in Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, reffnement and analysis program. Journal of Applied Crystallography, 42, 339–341. DOI: 10.1107/s0021889808042726.10.1107/s0021889808042726Search in Google Scholar
Favre-Nicolin, V., & Černý, R. (2002). FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction. Journal of Applied Crystallography, 35, 734–743. DOI: 10.1107/s0021889802015236.10.1107/s0021889802015236Search in Google Scholar
Friščić, T., Meštrović, E., Šklaec Šamec, D., Kaitner, B., & Fábián, L. (2009). One-pot mechanosynthesis with three levels of molecular self-assembly: Coordination bonds, hydrogen bonds and host–guest inclusion. Chemistry – A European Journal, 15, 12644–12652. DOI: 10.1002/chem.200901058.10.1002/chem.200901058Search in Google Scholar PubMed
Gör, K., Kürkçuöffglu, G. S., Yeşilel, O. Z., & Büyükgüngör, O. (2014). One-dimensional bimetallic cyano complexes with nicotinamide and isonicotinamide ligands. Journal of Molecular Structure, 1060, 166–175. DOI: 10.1016/j.molstruc.2013.12.024.10.1016/j.molstruc.2013.12.024Search in Google Scholar
Halaška, J., Pevec, A., Strauch, P., Kozlevčar, B., Koman, M., & Moncol, J. (2013). Supramolecular hydrogen-bonding networks constructed from copper(II) chlorobenzoates with nicotinamide: Structure and EPR. Polyhedron, 61, 20–26. DOI: 10.1016/j.poly.2013.05.032.10.1016/j.poly.2013.05.032Search in Google Scholar
James, S. L. (2003). Metal-organic frameworks. Chemical Society Reviews, 32, 276–288. DOI: 10.1039/b200393g.10.1039/b200393gSearch in Google Scholar PubMed
Janiak, C. (2000). A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society, Dalton Transactions, 2000, 3885–3896. DOI: 10.1039/b003010o.10.1039/b003010oSearch in Google Scholar
Janiak, C. (2003). Engineering coordination polymers towards applications. Dalton Transactions, 2003, 2781–2804. DOI: 10.1039/b305705b.10.1039/b305705bSearch in Google Scholar
Kitagawa, S., & Uemura, K. (2005). Dynamic porous properties of coordination polymers inspired by hydrogen bonds. Chemical Society Reviews, 34, 109–119. DOI: 10.1039/b313997m.10.1039/b313997mSearch in Google Scholar PubMed
Koksharova, T. V., Gritsenko, I. S., & Stoyanova, I. V. (2007). Coordination compounds of 3d-metal valerates and benzoates with nicotinamide. Russian Journal of General Chemistry, 77, 1635–1642. DOI: 10.1134/s107036320709023x.10.1134/s107036320709023xSearch in Google Scholar
Kose, D. A., Necefoffglu, H., Şahin, O., & Büyükgüngör, O. (2011). Synthesis, spectral, thermal and structural study of monoaquabis(acetylsalicylato-δO)bis(nicotinamide-δN)copper(II). Journal of Chemical Crystallography, 41, 297–305. DOI: 10.1007/s10870-010-9876-6.10.1007/s10870-010-9876-6Search in Google Scholar
Lever, A. B. P. (1984). Inorganic electronic spectroscopy (2nd ed.) (Series: Studies in physical and theoretical chemistry, Vol. 33). Amsterdam, The Netherlands: Elsevier.Search in Google Scholar
Ma, Z., & Moulton, B. (2007a). Mixed-ligand coordination species: A promising approach for “second-generation” drug development. Crystal Growth & Design, 7, 196–198. DOI: 10.1021/cg060602f.10.1021/cg060602fSearch in Google Scholar
Ma, Z., & Moulton, B. (2007b). Supramolecular medicinal chemistry: Mixed-ligand coordination complexes. Molecular Pharmaceutics, 4, 373–385. DOI: 10.1021/mp070013k.10.1021/mp070013kSearch in Google Scholar PubMed
Moncol, J., Maroszova, J., Koman, M., Melnik, M., Valko, M., Mazur, M., & Lis, T. (2008). Self-assembly of hydrogenbonded supramolecular structures of two copper(II) 2bromobenzoate complexes with 4-pyridylmethanol and nicotinamide. Journal of Coordination Chemistry, 61, 3740– 3752. DOI: 10.1080/00958970802146031.10.1080/00958970802146031Search in Google Scholar
Moncol, J., Kuchtanin, V., Polakovičová, P., Mroziński, J., Kalińska, B., Koman, M., Padělková, Z., Segffa, P., & Melník, M. (2012). Study of copper(II) thiophenecarboxylate complexes with nicotinamide. Polyhedron, 45, 94–102. DOI: 10.1016/j.poly.2012.07.069.10.1016/j.poly.2012.07.069Search in Google Scholar
Nakamoto, K. (1997). Infrared and Raman spectra of inorganic and coordination compounds (5th ed.) (Part B: Applications in coordination, organometallic, and bioinorganic chemistry, pp. 23, 56, 79). Chichester, UK: Wiley.Search in Google Scholar
Pasán, J., Sanchiz, J., Lloret, F., Julve, M., & Ruiz-Pérez, C. (2011). Copper(II)-phenylmalonate complexes with the bifunctional ligands nicotinamide and isonicotinamide. Polyhedron, 30, 2451–2458. DOI: 10.1016/j.poly.2011.06.006.10.1016/j.poly.2011.06.006Search in Google Scholar
Perec, M., Baggio, R. F., Penã, O., Sartoris, R. P., & Calvo, R. (2011). Synthesis and structures of four new compounds of the copper(II)–carboxylate–pyridinecarboxamide system. Inorganica Chimica Acta, 373, 117–123. DOI: 10.1016/j.ica.2011.03.065.10.1016/j.ica.2011.03.065Search in Google Scholar
Petříček, V., Dušek, M., & Palatinus, L. (2014). Crystallographic computing system JANA2006: General features. Zeitschrift für Kristallographie Crystalline Materials, 229, 345–352. DOI 10.1515/zkri-2014-1737.10.1515/zkri-2014-1737Search in Google Scholar
Shan, N., Hawxwell, S. M., Adams, H., Brammer, L., & Thomas, J. A. (2008). Self-assembly of electriactive thiacrown ruthenium(II) complexes into hydrogen-bonded chain and tape networks. Inorganic Chemistry, 47, 11551–11560. DOI: 10.1021/ic8007359.10.1515/zkri-2014-1737Search in Google Scholar
Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica Section A, A64, 112–122. DOI: 10.1107/s0108767307043930.10.1107/s0108767307043930Search in Google Scholar PubMed
Sheldrick, G. M. (2015a). SHELXT Integrated space-group and crystal-structure determination. Acta Crystallographica Section A, A71, 3–8. DOI: 10.1107/s2053273314026370.10.1107/s2053273314026370Search in Google Scholar PubMed PubMed Central
Sheldrick, G. M. (2015b). Crystal structure reffnement with SHELXL. Acta Crystallographica Section C, C71, 3–8. DOI: 10.1107/s2053229614024218.10.1107/s2053229614024218Search in Google Scholar
Smart, P., Bejarano-Villafuerte, A., & Brammer, L. (2013). Coordination chemistry meets halogen bonding and hydrogen bonding: building networks from 3-iodobenzoate paddlewheel units [Cu2(3-Ibz)4 (L)2 ]. CrystEngComm, 15, 3151–3159. DOI: 10.1039/c3ce26890j.10.1039/c3ce26890jSearch in Google Scholar
Spek, A. L. (2015). PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallographica Section C, C71, 9– 18. DOI: 10.1107/s2053229614024929.10.1107/s2053229614024929Search in Google Scholar PubMed
Stachová, P., Melník, M., Korabik, M., Mrozinski, J., Koman, M., Glowiak, T., & Valigura, D. (2007). Synthesis, spectral and magnetical characterization of monomeric [Cu(2NO2bz)2 (nia)2 (H2O)2] and structural analysis of similar [Cu(RCOO)2(L–N)2 (H2O)2] complexes. Inorganica Chimica Acta, 360, 1517–1522. DOI: 10.1016/j.ica.2006.08.019.10.1016/j.ica.2006.08.019Search in Google Scholar
Xue, J., Hua, X., Yang, L., Li, W., Xu, Y., Zhao, G., Zhang, G., Liu, L., Liu, K., Chen, J., & Wu, J. (2014). Cobalt(II) and strontium(II) complexes of three isomers, nicotinamide, isonicotinamide and picolinamide. Journal of Molecular Structure, 1059, 108–117. DOI: 10.1016/j.molstruc.2013.11.001.10.1016/j.molstruc.2013.11.001Search in Google Scholar
Valigura, D., Moncol, J., Korabik, M., Púčeková, Z., Lis, T., Mroziński, M., & Melník, M. (2006). New dimeric copper(II) complex [Cu(5-MeOsal)2 ( -nia)(H2 O)]2 with magnetic exchange interactions through H-bonds. European Journal of Inorganic Chemistry, 2006, 3813–3817. DOI: 10.1002/ejic.200600477.10.1002/ejic.200600477Search in Google Scholar
Vasková, Z., Moncol, J., Korabik, M., Valigura, D., Švorec, J., Lis, T., Valko, M., & Melník, M. (2010). Supramolecular dimer formation through hydrogen bond extensions of carboxylate ligands – Path for magnetic exchange. Polyhedron, 29, 154–163. DOI: 10.1016/j.poly.2009.06.056.10.1016/j.poly.2009.06.056Search in Google Scholar
Vasková, Z., Kitanovski, N., Jagličić, Z., Strauch, P., Růžičková, Z., Valigura, D., Koman, M., Kozlevčar, B., & Moncol, J. (2014). Synthesis and magneto-structural characterization of copper(II) nitrobenzoate complexes containing nicotinamide or methylnicotinamide ligands. Polyhedron, 81, 555– 563. DOI: 10.1016/j.poly.2014.07.017.10.1016/j.poly.2014.07.017Search in Google Scholar
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Original Paper
- Mononuclear and heterodinuclear phenanthrolinedione complexes of d- and f-block elements‡
- Original Paper
- New heteroscorpionate lanthanide complexes for ring-opening polymerisation of ɛ-caprolactone and rac-lactide‡
- Original Paper
- EPR on bis(1,2-dithiosquarato)cuprate(II) in the bis(1,2-dithiosquarato)nickelate(II) host lattice – structure and spectroscopy‡
- Review
- Electric fields in zeolites: fundamental features and environmental implications‡
- Short Communication
- Mononuclear cobalt(III) complexes with N-salicylidene-2-hydroxy-5-bromobenzylamine and N-salicylidene-2-hydroxy-5-chlorobenzylamine‡
- Original Paper
- Nickel(II) complex with 1,4,7-tris(2-aminoethyl)-1,4,7-triazacyclononane‡
- Original Paper
- SOD mimetic activity of salicylatocopper complexes‡
- Original Paper
- Copper oxalate complexes: synthesis and structural characterisation‡
- Review
- Towards the development of highly active copper catalysts for atom transfer radical addition (ATRA) and polymerization (ATRP)‡
- Original Paper
- Synthesis, DFT calculations and characterisation of new mixed Pt(II) complexes with 3-thiolanespiro-5′ 1-hydantoin and 4-thio-1H-tetrahydropyranspiro-5′-hydantoin‡
- Short Communication
- Formation of coordination compounds with aniline in the interlayer space of Ca2+-, Cu2+- and Fe3+-exchanged montmorillonite‡
- Original Paper
- Self-assembly hydrogen-bonded supramolecular arrays from copper(II) halogenobenzoates with nicotinamide:Structure and EPR spectra‡
- Original Paper
- Different structural types of copper(II) furan- and thiophencarboxylates: X-ray structural, EPR, spectral and magnetic analyses‡
- Preface
- XXV. International Conference on Coordination & Bioinorganic Chemistry (25th ICCBiC), June 2015, Slovakia
Articles in the same Issue
- Original Paper
- Mononuclear and heterodinuclear phenanthrolinedione complexes of d- and f-block elements‡
- Original Paper
- New heteroscorpionate lanthanide complexes for ring-opening polymerisation of ɛ-caprolactone and rac-lactide‡
- Original Paper
- EPR on bis(1,2-dithiosquarato)cuprate(II) in the bis(1,2-dithiosquarato)nickelate(II) host lattice – structure and spectroscopy‡
- Review
- Electric fields in zeolites: fundamental features and environmental implications‡
- Short Communication
- Mononuclear cobalt(III) complexes with N-salicylidene-2-hydroxy-5-bromobenzylamine and N-salicylidene-2-hydroxy-5-chlorobenzylamine‡
- Original Paper
- Nickel(II) complex with 1,4,7-tris(2-aminoethyl)-1,4,7-triazacyclononane‡
- Original Paper
- SOD mimetic activity of salicylatocopper complexes‡
- Original Paper
- Copper oxalate complexes: synthesis and structural characterisation‡
- Review
- Towards the development of highly active copper catalysts for atom transfer radical addition (ATRA) and polymerization (ATRP)‡
- Original Paper
- Synthesis, DFT calculations and characterisation of new mixed Pt(II) complexes with 3-thiolanespiro-5′ 1-hydantoin and 4-thio-1H-tetrahydropyranspiro-5′-hydantoin‡
- Short Communication
- Formation of coordination compounds with aniline in the interlayer space of Ca2+-, Cu2+- and Fe3+-exchanged montmorillonite‡
- Original Paper
- Self-assembly hydrogen-bonded supramolecular arrays from copper(II) halogenobenzoates with nicotinamide:Structure and EPR spectra‡
- Original Paper
- Different structural types of copper(II) furan- and thiophencarboxylates: X-ray structural, EPR, spectral and magnetic analyses‡
- Preface
- XXV. International Conference on Coordination & Bioinorganic Chemistry (25th ICCBiC), June 2015, Slovakia