A critical review of zeolites and their use in practical applications is presented. Specifically-considered are their role as media for selective light-induced oxidations using molecular O2, and the relationship between this phenomenon and the surface electric fields that exist in zeolites. Methods for the determination of the strength of zeolite surface fields are discussed using sorbed molecules such as CO (with IR detection), spin-probes, di-tert-butyl nitroxide, and NO (measured using EPR spectroscopy). Relationship between the surface fields and molecular reorientation energetics for free radicals sorbed in zeolites, obtained using muonium as a spin-label, is explored. Finally, results obtained from exposing the naturally occurring zeolite, clinoptilolite, to high energy electrons as a means for activating materials toward selective removal of radioactive caesium and strontium cations from wastewaters of nuclear power plants are presented.
‡Presented at the XXV. International Conference on Coordination and Bioinorganic Chemistry, Smolenice, Slovakia, 31 May–5 June 2015.
References
Angell, C. L., & Schaffer, P. C. (1966). Infrared spectroscopic investigations of zeolites and absorbed molecules. II. Adsorbed carbon monoxide. The Journal of Physical Chemistry, 70, 1413–1418. DOI: 10.1021/j100877a012.10.1021/j100877a012Suche in Google Scholar
Armbruster, T. (2001). Clinoptilotite-heulandite: applications and basic research. Studies in Surface Science and Catalysis, 135, 13–27. DOI: 10.1016/s0167-2991(01)81183-6.10.1016/s0167-2991(01)81183-6Suche in Google Scholar
Barrer, R. M. (1978). Zeolites and clay minerals as sorbents and molecular sieves. London, UK: Academic Press.Suche in Google Scholar
Berthier, G., Lemaire, H., Rassat, A., & Veillard, A. (1965). Interprétation structurale des spectres hyperffns" des radicaux libres et méthodes de chemie quantique. Theoretica Chimica Acta, 3, 213–230. DOI: 10.1007/bf00527717.10.1007/bf00527717Suche in Google Scholar
Biglino, D., Li, H. T., Erickson, R., Lund, A., Yahiro, H., & Shiotani, M. (1999). EPR and ENDOR studies of NOx and Cu2+ in zeolites: bonding and diffusion. Physical Chemistry Chemical Physics, 1, 2887–2896. DOI: 10.1039/a809284b.10.1039/a809284bSuche in Google Scholar
Blatter, F., & Frei, H. (1993). Very strong stabilization of alkene-O2 charge-transfer state in zeolite NaY: red-lightinduced photooxidation of 2,3-dimethyl-2-butene. Journal of the American Chemical Society, 115, 7501–7502. DOI: 10.1021/ja00069a059.10.1021/ja00069a059Suche in Google Scholar
Blatter, F., & Frei, H. (1994). Selective photooxidation of small alkenes by O2 with red light in zeolite Y. Journal of the American Chemical Society, 116, 1812–1820. DOI: 10.1021/ja00084a024.10.1021/ja00084a024Suche in Google Scholar
Blatter, F., Moreau, F., & Frei, H. (1994). Diffuse reffectance spectroscopy of visible alkene-O2 charge-transfer absorptions in zeolite Y and determination of photooxygenation quantum effciencies. The Journal of Physical Chemistry, 98, 13403– 13407. DOI: 10.1021/j100101a046.10.1021/j100101a046Suche in Google Scholar
Blatter, F., Sun, H., & Frei, H. (1995). Selective oxidation of propylene by O2 with visible light in a zeolite. Catalysis Letters, 35, 1–12. DOI: 10.1007/bf00806998.10.1007/bf00806998Suche in Google Scholar
Blatter, F., Sun, H., & Frei, H. (1996). Highly selective formation of tert-butyl hydroperoxide from the reaction of isobutene and O2 in a zeolite under visible light. Chemistry a European Journal, 2, 385–389. DOI: 10.1002/chem.19960020406.10.1002/chem.19960020406Suche in Google Scholar
Blatter, F., Sun, H., Vasenkov, S., & Frei, H. (1998). Photocatalyzed oxidation in zeolite cages. Catalysis Today, 41, 297– 309. DOI: 10.1016/s0920-5861(98)00021-2.10.1016/s0920-5861(98)00021-2Suche in Google Scholar
Bordiga, S., Lamberti, C., Geobaldo, F., Zecchina, A., Turnes Palomino, G., & Otero Arean, C. (1995). Fourier-transform infrared study of CO adsorbed at 77 K on H-mordenite and alkali-metal-exchanged mordenites. Langmuir, 11, 527–533. DOI: 10.1021/la00002a027.10.1021/la00002a027Suche in Google Scholar
Brown, P. J., Capiomont, A., Gillon, B., & Schweizer, J. (1983). Experimental spin density in nitroxides: A polarized neutron study of the tanol suberate. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 48, 753–761. DOI: 10.1080/00268978300100551.10.1080/00268978300100551Suche in Google Scholar
Carrington, A., & McLachlan, A. D. (1979). Introduction to magnetic resonance: With applications to chemistry and chemical physics. London, UK: Chapman and Hall.Suche in Google Scholar
Cejka, J., Corma, A., & Zones, S. (2010). Zeolites and catalysis: Synthesis, reactions and applications. Weinheim, Germany: Wiley.10.1002/9783527630295Suche in Google Scholar
Clarke, J. K. A., Darcy, R., Hegarty, B. F., O‘Donoghue, E., Amir-Ebrahimi, V., & Rooney, J. J. (1986). Free radicals in dimethyl ether on H-ZSM-5 zeolite. A novel dimension of heterogeneous catalysis. Journal of the Chemical Society, Chemical Communications, 1986, 425–426. DOI: 10.1039/c39860000425.10.1039/c39860000425Suche in Google Scholar
Cox, S. F. J. (1998). Muon spin relaxation studies of interstitial and molecular motion. Solid State Nuclear Magnetic Resonance, 11, 103–121. DOI: 10.1016/s0926-2040(97)00100-8.10.1016/s0926-2040(97)00100-8Suche in Google Scholar
Cox, S. F. J., & Sivia, D. S. (1997). Spin-lattice relaxation in hyperffne-coupled systems: Applications to interstitial diffusion and molecular dynamics. Applied Magnetic Resonance, 12, 213–226. DOI: 10.1007/bf03162188.10.1007/bf03162188Suche in Google Scholar
Cronstedt, A. F. (1756). Ron och beskriting om en obekant bärg ant, som kallas zeolites. Kungliga Svenska Vetenskapsakademiens Handlingar, Stockholm, 17, 120–123. (in Swedish)Suche in Google Scholar
Doetschman, D. C., Dwyer, D. W., Fox, J. D., Frederick, C. K., Scull, S., Thomas, G. D., Utterback, S. G., & Wei, J. (1994). Physical characterization of the state of motion of the phenalenyl spin probe in cation-exchanged faujasite zeolite supercages. Chemical Physics, 185, 343–356. DOI: 10.1016/0301-0104(94)00126-x.10.1016/0301-0104(94)00126-xSuche in Google Scholar
Doetschman, D. C., & Thomas, G. D. (1998). Molecular motions of nitroxyl radical spin probes in X-zeolites. Dependence on zeolite cation and spin probe chemical functional group. Chemical Physics, 228, 103–114. DOI: 10.1016/s03010104(97)00329-7.10.1016/s03010104(97)00329-7Suche in Google Scholar
Fleming, D. G., Shelley, M. Y., Arseneau, D. J., Senba, M., & Pan, J. J. (2002). Hyperffne and host–guest interactions of the Mu-cyclohexadienyl radical in NaY zeolite. The Journal of Physical Chemistry B, 106, 6395–6407. DOI: 10.1021/jp020378e.10.1021/jp020378eSuche in Google Scholar
Fleming, D. G., Arseneau, D. J., Shelley, M. Y., Beck, B., Dilger, H., & Roduner, E. (2011). SR studies of hyperffne couplings and molecular interactions of the Mucyclohexadienyl radical in Y-zeolites and in solid bulk benzene. The Journal of Physical Chemistry C, 115, 11177– 11191. DOI: 10.1021/jp202104u.10.1021/jp202104uSuche in Google Scholar
Fossey, J., Lefort, D., & Sorba, J. (1995). Free radicals in organic chemistry. Chichester, UK: Wiley.Suche in Google Scholar
Frei, H., Blatter, F., & Sun, H. (1996). Oxidizing hydrocarbons by O2 at high selectivity. CHEMTECH, 26(6), 24–30.Suche in Google Scholar
Frei, H. (2006). Selective hydrocarbon oxidation in zeolites. Science, 313, 309–310. DOI: 10.1126/science.1128981.10.1126/science.1128981Suche in Google Scholar
Froese, C. (1966). Hartree–Fock parameters for the atoms helium to radon. The Journal of Chemical Physics, 45, 1417– 1420. DOI: 10.1063/1.1727776.10.1063/1.1727776Suche in Google Scholar
Gardner, C. L., & Weinberger, M. A. (1970). Electron spin resonance spectra of nitric oxide adsorbed on zeolites. Canadian Journal of Chemistry, 48, 1317–1322. DOI: 10.1139/v70-216.10.1139/v70-216Suche in Google Scholar
Ghatlia, N. D., & Turro, N. J. (1991). Diastereoselective induction in radical coupling reactions: photolysis of 2,4diphenylpentan-3-ones adsorbed on faujasite zeolites. Journal of Photochemistry and Photobiology A: Chemistry, 57, 7–19. DOI: 10.1016/1010-6030(91)85003-y.10.1016/1010-6030(91)85003-ySuche in Google Scholar
Gutjahr, M., Pöppl, A., Böhlmann, W., & Bottcher, R. (2001). Electron pair acceptor properties of alkali cations in zeolite Y: an electron spin resonance study of adsorbed di-tertbutyl nitroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 189, 93–101. DOI: 10.1016/s09277757(01)00605-7.10.1016/s09277757(01)00605-7Suche in Google Scholar
Harris, R. K. (1983). Nuclear magnetic resonance spectroscopy. Melbourne, FL, USA: Pitman.Suche in Google Scholar
Hashimoto, S. (2003). Zeolite photochemistry: impact of zeolites on photochemistry and feedback from photochemistry to zeolite science. Photochemistry and Photobiology C: Photochemistry Reviews, 4, 19–49. DOI: 10.1016/s13895567(03)00003-0.10.1016/s13895567(03)00003-0Suche in Google Scholar
Herman, F., & Skillman, S. (1963). Atomic structure calculations. Englewood Cliffs, NJ, USA: Prentice-Hall.Suche in Google Scholar
Hightower, J. W., & van Leirsberg, D. A. (1975). Current status of the catalytic decomposition of NO. In R. L. Klimisch, & J. G. Larson (Eds.), The catalytic chemistry of nitrogen oxides (pp. 63–93). New York, NY, USA: Plenum Press. DOI: 10.1007/978-1-4615-8741-55.10.1007/978-1-4615-8741-55Suche in Google Scholar
Holloway, A. M., & Wayne, R. P. (2010). Atmospheric chemistry. Cambridge, UK: Royal Society of Chemistry.10.1039/9781839168628Suche in Google Scholar
Iwamoto, M., Yokoo, S., Sasaki, K., & Kagawa, S. (1981). Catalytic decomposition of nitric oxide over copper(II)exchanged Y-type zeolites. Journal of the Chemical Society, Faraday Transactions 1, 77, 1629–1638. DOI: 10.1039/f19817701629.10.1039/f19817701629Suche in Google Scholar
Kärger, J., & Ruthven, D. M. (1992). Diffusion in zeolites and other microporous solids. New York, NY, USA: Wiley.Suche in Google Scholar
Khodakov, A. Yu., Kustov, L. M., Kazansky, V. B., & Williams, C. (1992). Infrared spectroscopic study of the interactions of cations in zeolites with simple molecular probes. Part 2.– Adsorption and polarization of molecular hydrogen on zeolites containing polyvalent cations. Journal of the Chemical Society, Faraday Transactions, 88, 3251–3253. DOI: 10.1039/ft9928803251.10.1039/ft9928803251Suche in Google Scholar
Knözinger, H., & Huber, S. (1998). IR spectroscopy of small and weakly interacting molecular probes for acidic and basic zeolites. Journal of the Chemical Society, Faraday Transactions, 94, 2047–2059. DOI: 10.1039/a802189i.10.1039/a802189iSuche in Google Scholar
Koshland, D. E., Jr. (1992). The molecule of the year. Science, 258, 1861. DOI: 10.1126/science.1470903.10.1126/science.1470903Suche in Google Scholar
Laszlo, P. (1987). Chemical reactions on clays. Science, 235, 1473–1477. DOI: 10.1126/science.235.4795.1473.10.1126/science.235.4795.1473Suche in Google Scholar
Li, P., Xiang, Y., Grassian, V. H., & Larsen, S. C. (1999). CO adsorption as a probe of acid sites and the electric field in alkaline earth exchanged zeolite Beta using FT-IR and ab initio quantum calculations. The Journal of Physical Chemistry B. 103, 5058–5062. DOI: 10.1021/jp9902093.10.1021/jp9902093Suche in Google Scholar
Lund, A., & Rhodes, C. J. (1985). Radicals on surfaces. Dordrecht, The Netherlands: Kluwer.Suche in Google Scholar
Manoilova, O. V., Penãrroya Mentruit, M., Turnes Palomino, G., Tsyganenko, A. A., & Otero Areán, C. (2001). Variable temperature infrared spectrometry of carbon monoxide adsorbed on the zeolite K-ZSM-5. Vibrational Spectroscopy, 26, 107–111. DOI: 10.1016/s0924-2031(01)00104-7.10.1016/s0924-2031(01)00104-7Suche in Google Scholar
Mattar, S. M., & Stephens, A. D. (2001). Solvent dependence of the di-tert-butyl nitroxide (DTBN) hyperffne tensors: an experimental and computational study. Chemical Physics Letters, 347, 189–198. DOI: 10.1016/s0009-2614(01)01029-6.10.1016/s0009-2614(01)01029-6Suche in Google Scholar
Morton, J. R., & Preston, K. F. (1978). Atomic parameters for paramagnetic resonance data. Journal of Magnetic Resonance, 30, 577–582. DOI: 10.1016/0022-2364(78)90284-6.10.1016/0022-2364(78)90284-6Suche in Google Scholar
Mossoba, M. M., Makino, K., Riesz, P., & Perkins, R. C., Jr. (1984). Long-range proton hyperffne coupling in alicyclic nitroxide radicals by resolution-enhanced electron paramagnetic resonance. The Journal of Physical Chemistry, 88, 4717–4723. DOI: 10.1021/j150664a055.10.1021/j150664a055Suche in Google Scholar
Mumpton, F. A. (1999). La roca magica: Uses of natural zeolites in agriculture and industry. Proceedings of the National Academy of Sciences of the United States of America, 96, 3463–3470. DOI: 10.1073/pnas.96.7.3463.10.1073/pnas.96.7.3463Suche in Google Scholar PubMed PubMed Central
Pacchioni, G., Cogliandro, G., & Bagus, P. S. (1992). Molecular orbital cluster model study of bonding and vibrations of CO adsorbed on MgO surface. International Journal of Quantum Chemistry, 42, 1115–1139. DOI: 10.1002/qua.560420504.10.1002/qua.560420504Suche in Google Scholar
Panov, A. G., Larsen, R. G., Totah, N. I., Larsen, S. C., & Grassian, V. H. (2000). Photooxidation of toluene and p-xylene in cation-exchanged zeolites X, Y, ZSM-5, and Beta: The role of zeolite physicochemical properties in product yield and selectivity. The Journal of Physical Chemistry B, 104, 5706–5714. DOI: 10.1021/jp000831r.10.1021/jp000831rSuche in Google Scholar
Pöppl, A., Gutjahr, M., & Rudolf, T. (2004). Paramagnetic absorption complexes in zeolites as studied by advanced electron paramagnetic resonance techniques. In R. Haberlandt, D. Michel, A. Pöppl, & R. Stannarius (Eds.), Molecules in interaction with surfaces and interfaces (Lecture Notes in Physics, Vol. 634, pp. 185–215). Heidelberg, Germany: Springer. DOI: 10.1007/978-3-540-40024-05.10.1007/978-3-540-40024-05Suche in Google Scholar
Rhodes, C. J. (1992). Direct EPR evidence for Si dπ-pπ bonding in silylamine radical cations. Journal of the Chemical Society, Perkin Transactions 2, 1992, 235–241. DOI: 10.1039/p29920000235.10.1039/p29920000235Suche in Google Scholar
Rhodes, C. J., Reid, I. D., & Roduner, E. (1993). First direct observation of neutral organic radicals in a zeolite at ambient temperature. Journal of the Chemical Society, Chemical Communications, 1993, 512–513. DOI: 10.1039/c39850000512.10.1039/c39850000512Suche in Google Scholar
Rhodes, C. J., Butcher, E. C., Morris, H., & Reid, I. D. (1995). Mobility of radicals in zeolite catalysts: Molecular motion studied by muon spectroscopy. Magnetic Resonance in Chemistry, 33, S134–S146. DOI: 10.1002/mrc.1260331321.10.1002/mrc.1260331321Suche in Google Scholar
Rhodes, C. J., Hinds, C. S., & Reid, I. D. (1996). Muonium adduct of benzaldehyde: a novel probe of cation–molecule interactions in zeolite catalysts and of solvation and electronic substituent effects. Journal of the Chemical Society, Faraday Transactions, 92, 4265–4269. DOI: 10.1039/ft9969204265.10.1039/ft9969204265Suche in Google Scholar
Rhodes, C. J., Reid, I. D., & Jackson, R. A. (1997). Muonium adducts of benzaldehyde: Structural correlation with nitroxides. Hyperffne Interactions, 106, 193–201. DOI: 10.1023/a:1012602226981.10.1023/a:1012602226981Suche in Google Scholar
Rhodes, C. J., Dintinger, T. C., & Scott, C. A. (2000a). Sorption of benzene in cation-exchanged zeolite X, as measured by longitudinal field muon spin relaxation (LF-MuSRx). Magnetic Resonance in Chemistry, 38, 729–737. DOI: 10.1002/1097-458X(200009)38:9<729::AID-MRC701>3.0.CO;2-B.10.1002/1097-458X(200009)38:9<729::AID-MRC701>3.0.CO;2-BSuche in Google Scholar
Rhodes, C. J., Dintinger, T. C., & Scott, C. A. (2000b). Rates of motion for free radicals in zeolites as directly measured by longitudinal field muon relaxation. Magnetic Resonance in Chemistry, 38, 62–65. DOI: 10.1002/(SICI)1097-458X(200001)38:1<62::AID-MRC612>3.0.CO;2-6.10.1002/(SICI)1097-458X(200001)38:1<62::AID-MRC612>3.0.CO;2-6Suche in Google Scholar
Rhodes, C. J., Dintinger, T. C., Reid, I. D., & Scott, C. A. (2000c). Spin-labelling studies of benzene sorbed in carbon particles using muonium: a molecular view of sorption by environmental carbons. Magnetic Resonance in Chemistry, 38, S58–S64. DOI: 10.1002/1097-458X(200006)38:13<::AID-MRC700>3.0.CO;2-G.10.1002/1097-458X(200006)38:13<::AID-MRC700>3.0.CO;2-GSuche in Google Scholar
Rhodes, C. J. (2005). Reactive radicals on reactive surfaces: Heterogeneous processes in catalysis and environmental pollution control. Progress in Reaction Kinetics and Mechanism, 30, 145–213. DOI: 10.3184/007967405779134038.10.3184/007967405779134038Suche in Google Scholar
Rhodes, C. J. (2006). Studies of radio-labelled free radicals derived from a VOC (volatile organic compound), benzaldehyde, adsorbed in cation-exchanged zeolite X. Progress in Reaction Kinetics and Mechanism, 31, 139–158. DOI: 10.3184/146867806x197106.10.3184/146867806x197106Suche in Google Scholar
Rhodes, C. J. (2007). Zeolites: physical aspects and environmental applications. Annual Reports on the Progress of Chemistry Section C: Physical Chemistry, 103, 287–325. DOI: 10.1039/b605702k.10.1039/b605702kSuche in Google Scholar
Rhodes, C. J. (2008). Zeolite mediated reactions: Mechanistic aspects and environmental applications. Progress in Reaction Kinetics and Mechanism, 33, 1–79. DOI: 10.3184/146867807x272994.10.3184/146867807x272994Suche in Google Scholar
Rhodes, C. J. (2010a). Spectroscopic characterisation of molecules adsorbed at zeolite surfaces. Annual Reports on the Progress of Chemistry Section C: Physical Chemistry, 106, 36–76. DOI: 10.1039/b903505m.10.1039/b903505mSuche in Google Scholar
Rhodes, C. J. (2010b). Properties and applications of zeolites. Science Progress, 93, 223–284. DOI: 10.3184/003685010x12800828155007.10.3184/003685010x12800828155007Suche in Google Scholar PubMed
Rhodes, C. J. (2011). Electron spin resonance. Part 1: A diagnostic method in the biomedical sciences. Science Progress, 94, 16–96. DOI: 10.3184/003685011x12982218769939.10.3184/003685011x12982218769939Suche in Google Scholar
Rhodes, C. J., & Dintinger, T. C. (2011). Radiolabelling measurements of free radicals derived from aromatic volatile organic compounds adsorbed in zeolite nanomaterials to and above saturation loadings. Progress in Reaction Kinetics and Mechanism, 36, 287–322. DOI: 10.3184/146867811x13177993978554.10.3184/146867811x13177993978554Suche in Google Scholar
Rhodes, C. J. (2012). Muonium–the second radioisotope of hydrogen: A remarkable and unique radiotracer in the chemical, materials, biological and environmental sciences. Science Progress, 95, 101–174. DOI: 10.3184/003685012x13336424471773.10.3184/003685012x13336424471773Suche in Google Scholar PubMed
Rhodes, C. J., & Dintinger, T. C. (2012). Radiation effects on zeolite nanomaterials – some potential implications for cleaning liquid nuclear waste and for enhanced radioactive decontamination. Progress in Reaction Kinetics and Mechanism, 37, 103–137. DOI: 10.3184/146867812x1332352125519.10.3184/146867812x1332352125519Suche in Google Scholar
Rhodes, C. J. (2014). Unpaired electrons as probes of catalytic systems. Science Progress, 97, 303–370. DOI: 10.3184/003685014x14151169734173.10.3184/003685014x14151169734173Suche in Google Scholar PubMed
Rudolf, T., Pöppl, A., Hofbauer, W., & Michel, D. (2001). X, Q and W band electron paramagnetic resonance study of the sorption of NO in Na-A and Na-ZSM-5 zeolites. Physical Chemistry Chemical Physics, 3, 2167–2173. DOI: 10.1039/b100764p.10.1039/b100764pSuche in Google Scholar
Sherman, J. D. (1999). Synthetic zeolites and other microporous oxide molecular sieves. Proceedings of the National Academy of Sciences of the United States of America, 96, 3471–3478. DOI: 10.1073/pnas.96.7.3471.10.1073/pnas.96.7.3471Suche in Google Scholar
Sun, H., Blatter, F., & Frei, H. (1994). Selective oxidation of toluene to benzaldehyde by O2 with visible light in barium (2+) and calcium (2+)-exchanged zeolite Y. Journal of the American Chemical Society, 116, 7951–7952. DOI: 10.1021/ja00096a084.10.1021/ja00096a084Suche in Google Scholar
Sun, H., Blatter, F., & Frei, H. (1996). Cyclohexanone from cyclohexane and O2 in a zeolite under visible light with complete selectivity. Journal of the American Chemical Society, 118, 6873–6879. DOI: 10.1021/ja953273g.10.1021/ja953273gSuche in Google Scholar
Sun, H., Blatter, F., & Frei, H. (1997). Oxidation of propane to acetone and of ethane to acetaldehyde by O2 in zeolites with complete selectivity. Catalysis Letters, 44, 247–253. DOI: 10.1023/a:1018957915902.10.1023/a:1018957915902Suche in Google Scholar
Townsend, R. P. (1980). The properties and applications of zeolites (Special publication). London, UK: Chemical Society.Suche in Google Scholar
Ulbricht, K., & Koehler, P. (1985). Charakterisierung Lewissaurer Zentren an Zeolithen mit Hilfe der EPR-Spektren von adsorbiertem Di-tert-butyl-nitroxid. Zeitschrift für Chemie, 25, 253–254. DOI: 10.1002/zfch.19850250709.10.1002/zfch.19850250709Suche in Google Scholar
Uppili, S., Thomas, K. J., Crompton, E. M., & Ramamurthy, V. (2000). Probing zeolites with organic molecules: Supercages of X and Y zeolites are superpolar. Langmuir, 16, 265–274. DOI: 10.1021/la990392r.10.1021/la990392rSuche in Google Scholar
Vasenkov, S., & Frei, H. (1998). Time-resolved FT-infrared spectroscopy of visible light-induced alkene oxidation by O2 in a zeolite. The Journal of Physical Chemistry B, 102, 8177– 8182. DOI: 10.1021/jp981035c.10.1021/jp981035cSuche in Google Scholar
Volodin, A., Biglino, D., Itagaki, Y., Shiotani, M., & Lund, A. (2000). ESR study of monomer and triplet state dimer NO adsorbed on sulfated zirconia. Chemical Physics Letters, 327, 165–170. DOI: 10.1016/s0009-2614(00)00856-3.10.1016/s0009-2614(00)00856-3Suche in Google Scholar
Wang, S. X., Wang, L. M., & Ewing, R. C. (2000). Electron and ion irradiation of zeolites. Journal of Nuclear Materials, 278, 233–241. DOI: 10.1016/s0022-3115(99)00246-9.10.1016/s0022-3115(99)00246-9Suche in Google Scholar
Wang, L. M., Chen, J., & Ewing, R. C. (2004). Radiation and thermal effects on porous and layer structured materials as getters of radionuclides. Current Opinion in Solid State and Materials Science, 8, 405–418. DOI: 10.1016/j.cossms.2005.04.002.10.1016/j.cossms.2005.04.002Suche in Google Scholar
Yahiro, H., Lund, A., & Shiotani, M. (2004). Nitric oxide adsorbed on zeolites: EPR studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60, 1267–1278. DOI: 10.1016/j.saa.2003.10.045.10.1016/j.saa.2003.10.045Suche in Google Scholar PubMed
Yeritsyan, H., Sahakyan, A. A., Harutyunyan, V. V., Nikoghosyan, S. K., Hakhverdyan, E. A., Grigoryan, N. E., Hovhannisyan, A., Atoyan, V. A., Keheyan, Y., & Rhodes, C. J. (2013). Radiation-modiffed natural zeolites for cleaning liquid nuclear waste (irradiation against radioactivity). Nature Scientiffc Reports, 3, 2900. DOI: 10.1038/srep02900.10.1038/srep02900Suche in Google Scholar PubMed PubMed Central
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Original Paper
- Mononuclear and heterodinuclear phenanthrolinedione complexes of d- and f-block elements‡
- Original Paper
- New heteroscorpionate lanthanide complexes for ring-opening polymerisation of ɛ-caprolactone and rac-lactide‡
- Original Paper
- EPR on bis(1,2-dithiosquarato)cuprate(II) in the bis(1,2-dithiosquarato)nickelate(II) host lattice – structure and spectroscopy‡
- Review
- Electric fields in zeolites: fundamental features and environmental implications‡
- Short Communication
- Mononuclear cobalt(III) complexes with N-salicylidene-2-hydroxy-5-bromobenzylamine and N-salicylidene-2-hydroxy-5-chlorobenzylamine‡
- Original Paper
- Nickel(II) complex with 1,4,7-tris(2-aminoethyl)-1,4,7-triazacyclononane‡
- Original Paper
- SOD mimetic activity of salicylatocopper complexes‡
- Original Paper
- Copper oxalate complexes: synthesis and structural characterisation‡
- Review
- Towards the development of highly active copper catalysts for atom transfer radical addition (ATRA) and polymerization (ATRP)‡
- Original Paper
- Synthesis, DFT calculations and characterisation of new mixed Pt(II) complexes with 3-thiolanespiro-5′ 1-hydantoin and 4-thio-1H-tetrahydropyranspiro-5′-hydantoin‡
- Short Communication
- Formation of coordination compounds with aniline in the interlayer space of Ca2+-, Cu2+- and Fe3+-exchanged montmorillonite‡
- Original Paper
- Self-assembly hydrogen-bonded supramolecular arrays from copper(II) halogenobenzoates with nicotinamide:Structure and EPR spectra‡
- Original Paper
- Different structural types of copper(II) furan- and thiophencarboxylates: X-ray structural, EPR, spectral and magnetic analyses‡
- Preface
- XXV. International Conference on Coordination & Bioinorganic Chemistry (25th ICCBiC), June 2015, Slovakia
Artikel in diesem Heft
- Original Paper
- Mononuclear and heterodinuclear phenanthrolinedione complexes of d- and f-block elements‡
- Original Paper
- New heteroscorpionate lanthanide complexes for ring-opening polymerisation of ɛ-caprolactone and rac-lactide‡
- Original Paper
- EPR on bis(1,2-dithiosquarato)cuprate(II) in the bis(1,2-dithiosquarato)nickelate(II) host lattice – structure and spectroscopy‡
- Review
- Electric fields in zeolites: fundamental features and environmental implications‡
- Short Communication
- Mononuclear cobalt(III) complexes with N-salicylidene-2-hydroxy-5-bromobenzylamine and N-salicylidene-2-hydroxy-5-chlorobenzylamine‡
- Original Paper
- Nickel(II) complex with 1,4,7-tris(2-aminoethyl)-1,4,7-triazacyclononane‡
- Original Paper
- SOD mimetic activity of salicylatocopper complexes‡
- Original Paper
- Copper oxalate complexes: synthesis and structural characterisation‡
- Review
- Towards the development of highly active copper catalysts for atom transfer radical addition (ATRA) and polymerization (ATRP)‡
- Original Paper
- Synthesis, DFT calculations and characterisation of new mixed Pt(II) complexes with 3-thiolanespiro-5′ 1-hydantoin and 4-thio-1H-tetrahydropyranspiro-5′-hydantoin‡
- Short Communication
- Formation of coordination compounds with aniline in the interlayer space of Ca2+-, Cu2+- and Fe3+-exchanged montmorillonite‡
- Original Paper
- Self-assembly hydrogen-bonded supramolecular arrays from copper(II) halogenobenzoates with nicotinamide:Structure and EPR spectra‡
- Original Paper
- Different structural types of copper(II) furan- and thiophencarboxylates: X-ray structural, EPR, spectral and magnetic analyses‡
- Preface
- XXV. International Conference on Coordination & Bioinorganic Chemistry (25th ICCBiC), June 2015, Slovakia