Fundamentals of copper catalyzed atom transfer radical addition (ATRA) and mechanistically similar polymerization (ATRP) were discussed. Special emphasis was placed on structural characterization and electrochemical properties of copper complexes. Recent advances in the development of highly active copper complexes for both processes were also reviewed. It was found that electron-donating groups (methoxy and methyl in the 4 and 3,5 positions, respectively) of the pyridine rings in tris(2-pyridylmethyl)amine (TPMA) ligand, significantly increase the catalytic activity in copper mediated ATRA/ATRP.
‡Presented at the XXV. International Conference on Coordination and Bioinorganic Chemistry, Smolenice, Slovakia, 31 May–5 June 2015.
Acknowledgements.
Financial support from the National Science Foundation (CHE-0844131 and CHE-1360886) is greatly acknowledged.
References
Addison, A. W., Nageswara Rao, T., Reedijk, J., van Rijn, J., & Verschoor, G. C. (1984). Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6dithiaheptane]copper(II) perchlorate. Journal of the Chemical Society, Dalton Transactions, 1984, 1349–1356. DOI: 10.1039/dt9840001349.10.1039/dt9840001349Suche in Google Scholar
Ambundo, E. A., Deydier, M. V., Grall, A. J., Aguera-Vega, N., Dressel, L. T., Copper, T. H., Heeg, M. J., Ochrymowycz, L. A., & Rorabacher, D. B. (1999). Inffuence of coordination geometry upon copper(II/I) redox potentials. Physical parameters for twelve copper tripodal ligand complexes. Inorganic Chemistry, 38, 4233–4242. DOI: 10.1021/ic990334t.10.1021/ic990334tSuche in Google Scholar
Amiel, Y. (1974). The thermal and the copper-catalyzed addition of sulfonyl bromides to phenylacetylene. The Journal of Organic Chemistry, 39, 3867–3870. DOI: 10.1021/jo00940a014.10.1021/jo00940a014Suche in Google Scholar
Anastasaki, A., Nikolaou, V., Simula, A., Godfrey, J., Li, M., Nurumbetov, G., Wilson, P., & Haddleton, D. M. (2014a). Expanding the scope of the photoinduced living radical polymerization of acrylates in the presence of CuBr2 and Me6 -Tren. Macromolecules, 47, 3852–3859. DOI: 10.1021/ma500787d.10.1021/ma500787dSuche in Google Scholar
Anastasaki, A., Nikolaou, V., Zhang, Q., Burns, J., Samanta, S. R., Waldron, C., Haddleton, A. J., McHale, R., Fox, D., Percec, V., Wilson, P., & Haddleton, D. M. (2014b). Copper(II)/tertiary amine synergy in photoinduced living radical polymerization: Accelerated synthesis of ω-functional and α, ω-heterofunctional poly(acrylates). Journal of the American Chemical Society, 136, 1141–1149. DOI: 10.1021/ja411780m.10.1021/ja411780mSuche in Google Scholar PubMed
Asscher, M., & Vofsi, D. (1961). Chlorine activation by redoxtransfer. Part I. The reaction between aliphatic amines and carbon tetrachloride. Journal of Chemical Society, 1961, 2261–2264. DOI: 10.1039/jr9610002261.10.1039/jr9610002261Suche in Google Scholar
Baban, J. A., & Roberts, B. P. (1981). An electron spin resonance study of alkyl radical addition to diethyl vinylphosphonate. Journal of the Chemical Society, Perkin Transactions 2, 1981, 161–166. DOI: 10.1039/p29810000161.10.1039/p29810000161Suche in Google Scholar
Balili, M. N. C., & Pintauer, T. (2009). Persistent radical effect in action: Kinetic studies of copper-catalyzed atom transfer radical addition in the presence of free-radical diazo initiators as reducing agents. Inorganic Chemistry, 48, 9018–9026. DOI: 10.1021/ic901359a.10.1021/ic901359aSuche in Google Scholar PubMed
Balili, M. N. C., & Pintauer, T. (2010). Kinetic studies of the initiation step in copper catalyzed atom transfer radical addition (ATRA) in the presence of free radical diazo initiators as reducing agents. Inorganic Chemistry, 49, 5642–5649. DOI: 10.1021/ic100540q.10.1021/ic100540qSuche in Google Scholar PubMed
Balili, M. N. C., & Pintauer, T. (2011). Photoinitiated ambient temperature copper-catalyzed atom transfer radical addition (ATRA) and cyclization (ATRC) reactions in the presence of free-radical diazo initiator (AIBN). Dalton Transactions, 40, 3060–3066. DOI: 10.1039/c0dt01764g.10.1039/c0dt01764gSuche in Google Scholar PubMed
Bellus, D. (1985). Copper-catalyzed additions of organic polyhalides to oleffns: a versatile synthetic tool. Pure and Applied Chemistry, 57, 1827–1838.10.1351/pac198557121827Suche in Google Scholar
Benedetti, M., Forti, L., Ghelfi, F., Pagnoni, U. M., & Ronzoni, R. (1997). Halogen atom transfer radical cyclization of N-allyl-N-benzyl-2,2-dihaloamides to 2-pyrrolidinones, promoted by Fe°-FeCl3 or CuCl-TMEDA. Tetrahedron, 53, 14031–14042. DOI: 10.1016/s0040-4020(97)00908-3.10.1016/s0040-4020(97)00908-3Suche in Google Scholar
Blackman, A. G. (2008). Tripodal tetraamine ligands containing three pyridine units: The other polypyridyl ligands. European Journal of Inorganic Chemistry, 2008, 2633–2647. DOI: 10.1002/ejic.200800115.10.1002/ejic.200800115Suche in Google Scholar
Block, E., Aslam, M., Eswarakrishnan, V., Gebreyes, K., Hutchinson, J., Iyer, R., Lafftte, J. A., & Wall, A. (1986). αHaloalkanesulfonyl bromides in organic synthesis. 5. Versatile reagents for the synthesis of conjugated polyenes, enones, and 1,3-oxathiole 1,1-dioxides. Journal of the American Chemical Society, 108, 4568–4580. DOI: 10.1021/ja00275a051.10.1021/ja00275a051Suche in Google Scholar
Bortolamei, N., Isse, A. A., Di Marco, V. B., Gennaro, A., & Matyjaszewski, K. (2010). Thermodynamic properties of copper complexes used as catalysts in atom transfer radical polymerization. Macromolecules, 43, 9257–9267. DOI: 10.1021/ma101979p.10.1021/ma101979pSuche in Google Scholar
Bortolamei, N., Isse, A. A., Magenau, A. J. D., Gennaro, A., & Matyjaszewski, K. (2011). Controlled aqueous atom transfer radical polymerization with electrochemical generation of the active catalyst. Angewandte Chemie International Edition, 50, 11391–11394. DOI: 10.1002/anie.201105317.10.1002/anie.201105317Suche in Google Scholar
Braunecker, W. A., & Matyjaszewski, K. (2007). Controlled/living radical polymerization: Features, developments, and perspectives. Progress in Polymer Science, 32, 93–146. DOI: 10.1016/j.progpolymsci.2006.11.002.10.1016/j.progpolymsci.2006.11.002Suche in Google Scholar
Buckingham, D. A., & Sargeson, A. M. (1964). Oxidationreduction potentials as functions of donor atom and ligand. In F. P. J. Dwyer, & D. P. Mellor (Eds.), Chelating agents and metal chelates (chapter 6, pp. 237–282). New York, NY, USA: Acedemic Press. DOI: 10.1016/b978-0-12-395499-2.50012-8.10.1016/b978-0-12-395499-2.50012-8Suche in Google Scholar
Caronna, T., Citterio, A., Ghirardini, M., & Minisci, F. (1977). Nucleophilic character of alkyl radicals—XIII: Absolute rate constants for the addition of alkyl radicals to acrylonitrile and methyl acrylate. Tetrahedron, 33, 793–796. DOI: 10.1016/0040-4020(77)80194-4.10.1016/0040-4020(77)80194-4Suche in Google Scholar
Clark, A. J., Dell, C. P., Ellard, J. M., Hunt, N. A., & McDonagh, J. P. (1999). Effcient room temperature copper(I) mediated 5-endo radical cyclizations. Tetrahedron Letters, 40, 8619–8623. DOI: 10.1016/s0040-4039(99)01806-7.10.1016/s0040-4039(99)01806-7Suche in Google Scholar
Clark, A. J., De Campo, F., Deeth, R. J., Filik, R. P., Gatard, S., Hunt, N. A., Lastécouères, D., Thomas, G. H., Verlhac, J. B., & Wongtap, H. (2000). Atom transfer radical cyclisations of activated and unactivated N-allylhaloacetamides and N-homoallylhaloacetamides using chiral and non-chiral copper complexes. Journal of the Chemical Society, Perkin Transactions 1, 2000, 671–680. DOI: 10.1039/a909666c.10.1039/a909666cSuche in Google Scholar
Clark, A. J., Battle, G. M., & Bridge, A. (2001a). Effcient βlactam synthesis via 4-exo atom tranfer radical cyclisation using CuBr(tripyridylamine) complex. Tetrahedron Letters, 42, 4409–4412. DOI: 10.1016/s0040-4039(01)00737-7.10.1016/s0040-4039(01)00737-7Suche in Google Scholar
Clark, A. J., Battle, G. M., Heming, A. M., Haddleton, D. M., & Bridge, A. (2001b). Ligand electronic effects on rates of copper mediated atom transfer radical cyclisation and polymerisation. Tetrahedron Letters, 42, 2003–2005. DOI: 10.1016/s0040-4039(01)00061-2.10.1016/s0040-4039(01)00061-2Suche in Google Scholar
Clark, A. J. (2002). Atom transfer radical cyclisation reactions mediated by copper complexes. Chemical Society Reviews, 31, 1–11. DOI: 10.1039/b107811a.10.1039/b107811aSuche in Google Scholar
Clark, A. J., & Wilson, P. (2008). Copper mediated atom transfer radical cyclisations with AIBN. Tetrahedron Letters, 49, 4848–4850. DOI: 10.1016/j.tetlet.2008.06.016.10.1016/j.tetlet.2008.06.016Suche in Google Scholar
Coessens, V., Pintauer, T., & Matyjaszewski, K. (2001). Functional polymers by atom transfer radical polymerization. Progress in Polymer Science, 26, 337–377. DOI: 10.1016/s0079-6700(01)00003-x.10.1016/s0079-6700(01)00003-xSuche in Google Scholar
Curran, D. P. (1992). Comprehensive organic synthesis. New York, NY, USA: Pergamon.Suche in Google Scholar
De Campo, F., Lastécouères, D., Vincent, J. M., & Verlhac, J. B. (1999). Copper(I) complexes mediated cyclization reaction of unsaturated ester under fluoro biphasic procedure. The Journal of Organic Chemistry, 64, 4969–4971. DOI: 10.1021/jo990134z.10.1021/jo990134zSuche in Google Scholar PubMed
De Campo, F., Lastécouères, D., & Verlhac, J. B. (2000). New copper(I) and iron(II) complexes for atom transfer radical macrocyclisation reactions. Journal of the Chemical Society, Perkin Transactions 1, 2000, 575–580. DOI: 10.1039/a908245j.10.1039/a908245jSuche in Google Scholar
De Malde, M., Minisci, F., Pallini, U., Volterra, E., & Quilico, A. (1956). Reactions between acrylonitriles and aliphatic halogen derivatives. La Chimica e l’Industria, 38, 371–382.Suche in Google Scholar
Díaz-Álvarez, A. E., Crochet, P., Zablocka, M., Duhayon, C., Cadierno, V., & Majoral, J. P. (2008). Developing the Kharasch reaction in aqueous media: Dinuclear group 8 and 9 catalysts containing the bridging cage ligand tris(1,2dimethylhydrazino)diphosphane. European Journal of Inorganic Chemistry, 2008, 786–794. DOI: 10.1002/ejic.200701132.10.1002/ejic.200701132Suche in Google Scholar
Eckenhoff, W. T., & Pintauer, T. (2007). Atom transfer radical addition in the presence of catalytic amounts of copper(I/II) complexes with tris(2-pyridylmethyl)amine. Inorganic Chemistry, 46, 5844–5846. DOI: 10.1021/ic700908m.10.1021/ic700908mSuche in Google Scholar PubMed
Eckenhoff, W. T., Garrity, S. T., & Pintauer, T. (2008). Highly effcient copper-mediated atom-transfer radical addition (ATRA) in the presence of reducing agent. European Journal of Inorganic Chemistry, 2008, 563–571. DOI: 10.1002/ejic.200701144.10.1002/ejic.200701144Suche in Google Scholar
Eckenhoff, W. T., & Pintauer, T. (2010a). Copper catalyzed atom transfer radical addition (ATRA) and cyclization (ATRC) reactions in the presence of reducing agents. Catalysis Reviews: Science and Engineering, 52, 1–59. DOI: 10.1080/01614940903238759.10.1080/01614940903238759Suche in Google Scholar
Eckenhoff, W. T., & Pintauer, T. (2010b). Structural comparison of copper(I) and copper(II) complexes with tris(2pyridylmethyl)amine ligand. Inorganic Chemistry, 49, 10617–10626. DOI: 10.1021/ic1016142.10.1021/ic1016142Suche in Google Scholar
Eckenhoff, W. T., & Pintauer, T. (2011). Atom transfer radical addition (ATRA) catalyzed by copper complexes withtris[2-(dimethylamino)ethyl]amine (Me6 TREN) ligand in the presence of free-radical diazo initiator AIBN. Dalton Transactions, 40, 4909–4917. DOI: 10.1039/c1dt10189g.10.1039/c1dt10189gSuche in Google Scholar
Eckenhoff, W. T., Biernesser, A. B., & Pintauer, T. (2012). Kinetic and mechanistic aspects of atom transfer radical addition (ATRA) catalyzed by copper complexes with tris(2-pyridylmethyl)amine. Inorganic Chemistry, 51, 11917–11929. DOI: 10.1021/ic3018198.10.1021/ic3018198Suche in Google Scholar
Freidlina, R. K., & Velichko, F. K. (1977). Synthetic applications of homolytic addition and telomerisation reactions of bromine-containing addends with unsaturated compounds containing electron-withdrawing substituents. Synthesis, 1977, 145–154. DOI: 10.1055/s-1977-24301.10.1055/s-1977-24301Suche in Google Scholar
Ghelfi, F., Bellesia, F., Forti, L., Ghirardini, G., Grandi, R., Libertini, E., Montemaggi, M. C., Pagnoni, U. M., Pinetti, A., De Buyck, D., & Parsons, A. F. (1999). The inffuence of benzylic protection and allylic substituents on the CuClTMEDA catalyzed rearrangement of N-allyl-N-benzyl-2,2dihaloamides to γ-lactams. Application to the stereoselectives synthesis of pilolactam. Tetrahedron, 55, 5839–5852. DOI: 10.1016/s0040-4020(99)00247-1.10.1016/s0040-4020(99)00247-1Suche in Google Scholar
Ghelfi, F., & Parsons, A. F. (2000). N,N-(Dimethylamino)2-pyrrolidinones from the rearrangement of N-allyl-N′,N′dimethyl-2,2-dichlorohydrazides promoted by CuCl–N,N, N′,N′-tetramethylethylenediamine. The Journal of OrganicChemistry, 65, 6249–6253. DOI: 10.1021/jo0004153.10.1021/jo0004153Suche in Google Scholar
Golub, G., Lashaz, A., Cohen, A., Paoletti, P., Bencini, A., Valtancoli, B., & Meyerstein, D. (1997). The effect of Nmethylation of tetra-aza-alkane copper complexes on the axial binding of anions. Inorganica Chimica Acta, 255, 111–115. DOI: 10.1016/s0020-1693(96)05352-2.10.1016/s0020-1693(96)05352-2Suche in Google Scholar
Gossage, R. A., van De Kuil, L. A., & van Koten, G. (1998). Diaminoarylnickel(II) “pincer” complexes: Mechanistic considerations in the Kharasch addition reaction, controlled polymerization, and dendrimeric transition metal catalysts. Accounts of Chemical Research, 31, 423–431. DOI: 10.1021/ar970221i.10.1021/ar970221iSuche in Google Scholar
Haddleton, D. M., Crossman, M. C., Hunt, K. H., Topping, C., Waterson, C., & Suddaby, K. G. (1997a). Identifying the nature of the active species in the polymerization of methacrylates: Inhibition of methyl methacrylate homopolymerizations and reactivity ratios for copolymerization of methyl methacrylate/n-butyl methacrylate in classical anionic, alkyllithium/trialkylaluminum-initiated, group transfer polymerization, atom transfer radical polymerization, catalytic chain transfer, and classical free radical polymerization. Macromolecules, 30, 3992–3998. DOI: 10.1021/ma970303m.10.1021/ma970303mSuche in Google Scholar
Haddleton, D. M., Jasieczek, C. B., Hannon, M. J., & Shooter, A. J. (1997b). Atom transfer radical polymerization of methyl methacrylate initiated by alkyl bromide and 2pyridinecarbaldehyde imine copper(I) complexes. Macromolecules, 30, 2190–2193. DOI: 10.1021/ma961074.10.1021/ma961074Suche in Google Scholar
Haddleton, D. M., Duncalf, D. J., Kukulj, D., Crossman, M. C., Jackson, S. G., Bon, S. A. F., Clark, A. J., & Shooter, A. J. (1998). [N-Alkyl-(2-pyridyl)methanimine]copper(I) complexes: Characterisation and application as catalysts for atom-transfer polymerisation. European Journal of Inorganic Chemistry, 1998, 1799–1806. DOI: 10.1002/(SICI)1099-0682(199811)1998:11<1799::AID-EJIC1799>3.0.CO;2-6.10.1002/(SICI)1099-0682(199811)1998:11<1799::AID-EJIC1799>3.0.CO;2-6Suche in Google Scholar
Harrison, W. D., Kennedy, D. M., Power, M., Sheahan, R., & Hathaway, B. J. (1981). A structural proffle of the bis(2,2′ bipyridyl)monochlorocopper(II) cation. Crystal structures of bis(2,2′-bipyridyl)monochlorocopper(II) perchlorate and the nitrate trihydrate. Journal of the Chemical Society, Dalton Transactions, 1981, 1556–1564. DOI: 10.1039/dt9810001556.10.1039/dt9810001556Suche in Google Scholar
Iizuka, Y., Li, Z., Satoh, K., Kamigaito, M., Okamoto, Y., Ito, J. I., & Nishiyama, H. (2007). Chiral (–)-DIOP ruthenium complexes for asymmetric radical addition and living radical polymerization reactions. European Journal of Organic Chemistry, 2007, 782–791. DOI: 10.1002/ejoc.200600862.10.1002/ejoc.200600862Suche in Google Scholar
Isse, A. A., Visona, G., Ghelfi, F., Roncaglia, F., & Gennaro, A. (2015). Electrochemical approach to copper-catalyzed reversed atom transfer radical cyclization. Advanced Synthesis & Catalysis, 357, 782–792. DOI: 10.1002/adsc.201400587.10.1002/adsc.201400587Suche in Google Scholar
Jakubowski, W., & Matyjaszewski, K. (2005). Activator generated by electron transfer for atom transfer radical polymerization. Macromolecules, 38, 4139–4146. DOI: 10.1021/ma047389l.10.1021/ma047389lSuche in Google Scholar
Jakubowski, W., & Matyjaszewski, K. (2006). Activators regenerated by electron transfer for atom-transfer radical polymerization of (meth)acrylates and related block copolymers. Angewandte Chemie International Edition, 45, 4482–4486. DOI: 10.1002/anie.200600272.10.1002/anie.200600272Suche in Google Scholar
Jakubowski, W., Min, K., & Matyjaszewski, K. (2006). Activators regenerated by electron transfer for atom transfer radical polymerization of styrene. Macromolecules, 39, 39–45. DOI: 10.1021/ma0522716.10.1021/ma0522716Suche in Google Scholar
Julia, M., Sasussine, L., & Le Thuillier, G. (1979a). Addition du chloroacetate de methyle sur les oleffnes. Journal of Organometallic Chemistry, 174, 359–366. DOI: 10.1016/s0022-328x(00)85601-6. (in French)10.1016/s0022-328x(00)85601-6Suche in Google Scholar
Julia, M., Le Thuillier, G., & Saussine, L. (1979b). Additions d’α-chloronitriles sur les oleffnes par catalyse redox. Journal of Organometallic Chemistry, 177, 211–220. DOI: 10.1016/s0022-328x(00)92346-5. (in French)10.1016/s0022-328x(00)92346-5Suche in Google Scholar
Kamigaito, M., Ando, T., & Sawamoto, M. (2001). Metalcatalyzed living radical polymerization. Chemical Reviews, 101, 3689–3745. DOI: 10.1021/cr9901182.10.1021/cr9901182Suche in Google Scholar PubMed
Kamigata, N., Sawada, H., & Kobayashi, M. (1983). Reactions of arenesulfonyl chlorides with oleffns catalyzed by a ruthenium(II) complex. The Journal of Organic Chemistry, 48, 3793–3796. DOI: 10.1021/jo00169a038.10.1021/jo00169a038Suche in Google Scholar
Kato, M., Kamigaito, M., Sawamoto, M., & Higashimura, T. (1995). Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: Possibility of living radical polymerization. Macromolecules, 28, 1721–1723. DOI: 10.1021/ma00109a056.10.1021/ma00109a056Suche in Google Scholar
Kaur, A., Gorse, E. E., Ribelli, T. G., Jerman, C. C., & Pintauer, T. (2015a). Atom transfer radical addition (ATRA) catalyzed by copper complexes with N,N,N′,N′-tetrakis(2pyridylmethyl)ethylenediamine (TPEN) ligand. Polymer, 72, 246–252. DOI: 10.1016/j.polymer.2015.02.021.10.1016/j.polymer.2015.02.021Suche in Google Scholar
Kaur, A., Ribelli, T. G., Schröder, K., Matyjaszewski, K., & Pintauer, T. (2015b). Properties and ATRP activity of copper complexes with substituted tris(2-pyridylmethyl)aminebased ligands. Inorganic Chemistry, 54, 1474–1486. DOI: 10.1021/ic502484s.10.1021/ic502484sSuche in Google Scholar PubMed
Kharasch, M. S., Engelmann, H., & Mayo, F. R. (1937). The peroxide effect in the addition of reagents to unsaturated compounds. XV. The addition of hydrogen bromide to 1and 2-bromoand chloro-propenes. The Journal of Organic Chemistry, 2, 288–302. DOI: 10.1021/jo01226a011.10.1021/jo01226a011Suche in Google Scholar
Kharasch, M. S., Jensen, E. V., & Urry, W. H. (1945a). Addition of carbon tetrachloride and chloroform to oleffns. Science, 102, 128–128. DOI: 10.1126/science.102.2640.128.10.1126/science.102.2640.128Suche in Google Scholar PubMed
Kharasch, M. S., Urry, W. H., & Jensen, E. V. (1945b). Addition of derivatives of chlorinated acetic acids to oleffns. Journal of the American Chemical Society, 67, 1626–1626. DOI: 10.1021/ja01225a517.10.1021/ja01225a517Suche in Google Scholar
Kickelbick, G., Pintauer, T., & Matyjaszewski, K. (2002). Structural comparison of CuII complexes in atom transfer radical polymerization. New Journal of Chemistry, 26, 462–468. DOI: 10.1039/b105454f.10.1039/b105454fSuche in Google Scholar
Konkolewicz, D., Schöder, K., Buback, J., Bernhard, S., & Matyjaszewski, K. (2012). Visible light and sunlight photoinduced ATRP with ppm of Cu catalyst. ACS Macro Letters, 1, 1219–1223. DOI: 10.1021/mz300457e.10.1021/mz300457eSuche in Google Scholar
Lad, J., Harrison, S., Mantovani, G., & Haddleton, D. M. (2003). Copper mediated living radical polymerisation: interactions between monomer and catalyst. Dalton Transactions, 2003, 4175–4180. DOI: 10.1039/b303888b.10.1039/b303888bSuche in Google Scholar
Lingane, J. J. (1941). Interpretation of the polarographic waves of complex metal ions. Chemical Reviews, 29, 1–35. DOI: 10.1021/cr60092a001.10.1021/cr60092a001Suche in Google Scholar
Lundgren, R. J., Rankin, M. A., McDonald, R., & Stradiotto, M. (2008). Neutral, cationic, and zwitterionic ruthenium(II) atom transfer radical addition catalysts supported by P,Nsubstituted indene or indenide ligands. Organometallics, 27, 254–258. DOI: 10.1021/om700914k.10.1021/om700914kSuche in Google Scholar
Magenau, A. J. D., Strandwitz, N. C., Gennaro, A., & Matyjaszewski, K. (2011). Electrochemically mediated atom transfer radical polymerization. Science, 332, 81–84. DOI: 10.1126/science.1202357.10.1126/science.1202357Suche in Google Scholar
Magenau, A. J. D., Kwak, Y., Schröder, K., & Matyjaszewski, K. (2012). Highly active bipyridine-based ligands for atom transfer radical polymerization. ACS Macro Letters, 1, 508– 512. DOI: 10.1021/mz3000489.10.1021/mz3000489Suche in Google Scholar
Magenau, A. J. D., Bortolamei, N., Frick, E., Park, S., Gennaro, A., & Matyjaszewski, K. (2013). Investigation of electrochemically mediated atom transfer radical polymerization. Macromolecules, 46, 4346–4353. DOI: 10.1021/ma400869e.10.1021/ma400869eSuche in Google Scholar
Maiti, D., Narducci Sarjeant, A. A., Itoh, S., & Karlin, K. D. (2008). Suggestion of an organometallic intermediate in an intramolecular dechlorination reaction involving copper(I) and ArCH2Cl moiety. Journal of the American Chemical Society, 130, 5644–5645. DOI: 10.1021/ja800795b.10.1021/ja800795bSuche in Google Scholar
Martin, P., Steiner, E., Streith, J., Winkler, T., & Belluš, D. (1985). Convenient approaches to heterocycles via coppercatalysed additions of organic polyhalides to activated oleffns. Tetrahedron, 41, 4057–4078. DOI: 10.1016/s00404020(01)97184-4.10.1016/s00404020(01)97184-4Suche in Google Scholar
Matyjaszewski, K., Patten, T. E., & Xia, J. (1997). Controlled/”living” radical polymerization. Kinetics of the homogeneous atom transfer radical polymerization of styrene. Journal of the American Chemical Society, 119, 674–680. DOI: 10.1021/ja963361g.10.1021/ja963361gSuche in Google Scholar
Matyjaszewski, K. (Ed.) (1998). Controlled radical polymerization (ACS symposium series, Vol. 685). Washington, DC, USA: American Chemical Society. DOI: 10.1021/bk-19980685.10.1021/bk-19980685Suche in Google Scholar
Matyjaszewski, K. (Ed.) (2000). Controlled/living radical polymerization: Progress in ATPR, NMP and RAFT (ACS symposium series, Vol. 768). Washington, DC, USA: American Chemical Society. DOI: 10.1021/bk-2000-0768.10.1021/bk-2000-0768Suche in Google Scholar
Matyjaszewski, K., & Xia, J. (2001). Atom transfer radical polymerization. Chemical Reviews, 101, 2921–2990. DOI: 10.1021/cr940534g.10.1021/cr940534gSuche in Google Scholar PubMed
Matyjaszewski, K., & Davis, T. P. (Eds.) (2002). Handbook of radical polymerization. Hoboken, NJ, USA: Wiley. DOI: 10.1002/0471220450.10.1002/0471220450Suche in Google Scholar
Matyjaszewski, K. (Ed.) (2003a). Advances in controlled/living radical polymerization (ACS symposium series, Vol. 854). Washington, DC, USA: American Chemical Society. DOI: 10.1021/bk-2003-0854.10.1021/bk-2003-0854Suche in Google Scholar
Matyjaszewski, K. (2003b). Controlling polymer structures by atom transfer radical polymerization and other controlled/living radical polymerizations. Macromolecular Symposia, 195, 25–31. DOI: 10.1002/masy.200390131.10.1002/masy.200390131Suche in Google Scholar
Matyjaszewski, K. (2005). Macromolecular engineering: From rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties. Progress in Polymer Science, 30, 858–875. DOI: 10.1016/j.progpolymsci.2005.06.004.10.1016/j.progpolymsci.2005.06.004Suche in Google Scholar
Matyjaszewski, K. (Ed.) (2006). Controlled radical polymerization. From synthesis to materials (ACS symposium series, Vol. 944). Washington, DC, USA: American Chemical Society. DOI: 10.1021/bk-2006-0944.10.1021/bk-2006-0944Suche in Google Scholar
Matyjaszewski, K., Jakubowski, W., Min, K., Tang, W., Huang, J., Braunecker, W. A., & Tsarevsky, N. V. (2006). Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents. Proceedings of the National Academy of Sciences of the Untied States of America, 103, 15309–15314. DOI: 10.1073/pnas.0602675103.10.1073/pnas.0602675103Suche in Google Scholar PubMed PubMed Central
Matyjaszewski, K., Gnanou, Y., & Leibler, L. (Eds.) (2007a). Macromolecular engineering: Precise synthesis, materials properties, applications. Weinheim, Germany: Wiley. DOI: 10.1002/9783527631421.10.1002/9783527631421Suche in Google Scholar
Matyjaszewski, K., Dong, H., Jakubowski, W., Pietrasik, J., & Kusumo, A. (2007b). Grafting from surfaces for “everyone”: ARGET ATRP in the presence of air. Langmuir, 23, 4528– 4531. DOI: 10.1021/la063402e.10.1021/la063402eSuche in Google Scholar
Matyjaszewski, K. (2012). Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macromolecules, 45, 4015–4039. DOI: 10.1021/ma3001719.10.1021/ma3001719Suche in Google Scholar
Matyjaszewski, K. (2014). From cationic ring-opening polymerization to atom transfer radical polymerization. Polimery, 59, 24–37. DOI: 10.14314/polimery.2014.024.10.14314/polimery.2014.024Suche in Google Scholar
Matyjaszewski, K., & Tsarevsky, N. V. (2014). Macromolecular engineering by atom transfer radical polymerization. Journal of the American Chemical Society, 136, 6513–6533. DOI: 10.1021/ja408069v.10.1021/ja408069vSuche in Google Scholar
Min, K., Gao, H., & Matyjaszewski, K. (2005). Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET). Journal of the American Chemical Society, 127, 3825–3830. DOI: 10.1021/ja0429364.10.1021/ja0429364Suche in Google Scholar
Min, K., Jakubowski, W., & Matyjaszewski, K. (2006). AGET ATRP in the presence of air in miniemulsion and in bulk. Macromolecular Rapid Communications, 27, 594–598. DOI: 10.1002/marc.200600060.10.1002/marc.200600060Suche in Google Scholar
Min, K., Gao, H., & Matyjaszewski, K. (2007). Use of ascorbic acid as reducing agent for synthesis of well-deffned polymers by ARGET ATRP. Macromolecules, 40, 1789–1791. DOI: 10.1021/ma0702041.10.1021/ma0702041Suche in Google Scholar
Miniotte, P. G., Hubert, A. J., & Teyssie, P. (1975). The role of copper(I) complexes in the selective formation of oxazoles from unsaturated nitriles and diazoesters. Journal of Organometallic Chemistry, 88, 115–120. DOI: 10.1016/s0022328x(00)89335-3.10.1016/s0022328x(00)89335-3Suche in Google Scholar
Minisci, F. (1961). Radical reactions in solution. Dipolar character of free radicals from decomposition of organic peroxides. Gazzetta Chimica Italiana, 91, 386–389.Suche in Google Scholar
Minisci, F., & Pallini, U. (1961). Radical reactions in solution. Haloalkylation of acrylic acid derivatives. Gazzetta Chimica Italiana, 91, 1030–1036.Suche in Google Scholar
Minisci, F., & Galli, R. (1962). Inffuence of the electrophilic character on the reactivity of free radicals in solution. Reactivity of alkoxy, hydroxy, alkyl and azido radicals in the presence of oleffns. Tetrahedron Letters, 3, 533–538. DOI: 10.1016/s0040-4039(00)70508-9.10.1016/s0040-4039(00)70508-9Suche in Google Scholar
Minisci, F., Cecere, M., & Galli, R. (1963). Oxidation of carbon free radicals in the presence of Cu and Fe salts. New synthesis of nitro derivatives and nitric esters. Gazzetta Chimica Italiana, 93, 1288–1294.Suche in Google Scholar
Minisci, F., & Galli, R. (1963). Addition of N-chloroamines to styrene and butadiene, catalyzed by iron and copper salts. La Chimica e l’Industria, 45, 1400–1401.Suche in Google Scholar
Minisci, F. (1975). Free–radical additions to oleffns in the presence of redox systems. Accounts of Chemical Research, 8, 165–171. DOI: 10.1021/ar50089a004.10.1021/ar50089a004Suche in Google Scholar
Muñoz-Molina, J. M., Caballero, A., Díaz-Requejo, M. M., Troffmenko, S., Belderraín, T. R., & Pérez, P. J. (2007). Copper–homoscorpionate complexes as active catalysts for atom transfer radical addition to oleffns. Inorganic Chemistry, 46, 7725–7730. DOI: 10.1021/ic0702872.10.1021/ic0702872Suche in Google Scholar
Muñoz-Molina, J. M., Belderraín, T. R., & Pérez, P. J. (2008). Copper-catalyzed synthesis of 1,2-disubstituted cyclopentanes from 1,6-dienes by ring-closing Kharasch addition of carbon tetrachloride. Advanced Synthesis & Catalysis, 350, 2365–2372. DOI: 10.1002/adsc.200800364.10.1002/adsc.200800364Suche in Google Scholar
Muñoz-Molina, J. M., Belderrain, T. R., & Pérez, P. J. (2011). Atom transfer radical reactions as a tool for oleffn functionalization – on the way to practical applications. European Journal of Inorganic Chemistry, 2011, 3155–3164. DOI: 10.1002/ejic.201100379.10.1002/ejic.201100379Suche in Google Scholar
Murai, S., Sonoda, N., & Tsutsumi, S. (1964). Copper salts induced addition of ethyl trichloroacetate to oleffns. The Journal of Organic Chemistry, 31, 2104–2105. DOI: 10.1021/jo01030a565.10.1021/jo01030a565Suche in Google Scholar
Nagashima, H., Wakamatsku, H., Itoh, K., Tomo, Y., & Tsuji, J. (1983). New regioand stereoselective preparation of trichlorinated γ-butyrolactones by copper catalyzed cyclization of allyl trichloroacetates. Tetrahedron Letters, 24, 2395–2398. DOI: 10.1016/s0040-4039(00)81935-8.10.1016/s0040-4039(00)81935-8Suche in Google Scholar
Nagashima, H., Seki, K., Ozaki, N., Wakamatshu, H., Itoh, K., Tomo, Y., & Tsuji, J. (1990). Transition-metal-catalyzed radical cyclization: Copper-catalyzed cyclization of allyl trichloroacetates to trichlorinated γ-lactones. The Journal of Organic Chemistry, 55, 985–990. DOI: 10.1021/jo00290a032.10.1021/jo00290a032Suche in Google Scholar
Nguyen, J. D., Tucker, J. W., Konieczynska, M. D., & Stephenson, C. R. J. (2011). Intermolecular atom transfer radical addition to oleffns mediated by oxidative quenching of photoredox catalysts. Journal of the American Chemical Society, 133, 4160–4163. DOI: 10.1021/ja108560e.10.1021/ja108560eSuche in Google Scholar PubMed PubMed Central
Odian, G. (2004). Principles of polymerization (4th ed.). Hoboken, NJ, USA: Wiley. DOI: 10.1002/047147875x.10.1002/047147875xSuche in Google Scholar
Oe, Y., & Uozumi, Y. (2008). Highly effcient heterogeneous aqueous Kharasch reaction with an amphiphilic resinsupported ruthenium catalyst. Advanced Synthesis & Catalysis, 350, 1771–1775. DOI: 10.1002/adsc.200800359.10.1002/adsc.200800359Suche in Google Scholar
Patten, T. E., & Matyjaszewski, K. (1999). Copper(I)-catalyzed atom transfer radical polymerization. Accounts of Chemical Research, 32, 895–903. DOI: 10.1021/ar9501434.10.1021/ar9501434Suche in Google Scholar
Pintauer, T., McKenzie, B., & Matyjaszewski, K. (2003). Toward structural and mechanistic understanding of transition metal-catalyzed atom transfer radical processes In K. Matyjaszewski (Ed.), Advances in controlled/living radical polymerization (ACS symposium series, Vol. 854, chapter 10, pp. 130–147). Washington, DC, USA: American Chemical Society. DOI: 10.1021/bk-2003-0854.ch010.10.1021/bk-2003-0854.ch010Suche in Google Scholar
Pintauer, T., & Matyjaszewski, K. (2005). Structural aspects of copper catalyzed atom transfer radical polymerization. Coordination Chemistry Reviews, 249, 1155–1184. DOI: 10.1016/j.ccr.2004.11.010.10.1016/j.ccr.2004.11.010Suche in Google Scholar
Pintauer, T. (2008). Atom transfer radical addition (ATRA) catalyzed by ppm amounts of copper complexes. Polymer Preprints (American Chemical Society, Division of Polymer Chemistry), 49, 12–13.Suche in Google Scholar
Pintauer, T., & Matyjaszewski, K. (2008). Atom transfer radical addition and polymerization reactions catalyzed by ppm amounts of copper complexes. Chemical Society Reviews, 37, 1087–1097. DOI: 10.1039/b714578k.10.1039/b714578kSuche in Google Scholar
Pintauer, T. (2009). “Greening” of copper catalyzed atom transfer radical addition (ATRA) and cyclization (ATRC) reactions. In K. Matyjaszewski (Ed.), Controlled/living radical polymerization: Progress in ATRP (ACS symposium series, Vol. 1023, chapter 5, pp. 63–84). Washington, DC, USA: American Chemical Society. DOI: 10.1021/bk-20091023.ch005.10.1021/bk-20091023.ch005Suche in Google Scholar
Pintauer, T., & Matyjaszewski, K. (2009). Structural and mechanistic aspects of copper catalyzed atom transfer radical polymerization. In Z. Guan (Ed.), Metal catalysts in olefin polymerization (Series: Topics in organometallic chemistry, Vol. 26, pp. 221–251). Berlin, Germany: Springer. DOI: 10.1007/341820088.10.1007/341820088Suche in Google Scholar
Pintauer, T., Eckenhoff, W. T., Ricardo, C., Balili, M. N. C., Biernesser, A. B., Noonan, S. J., & Taylor, M. J. W. (2009). Highly effcient, ambient-temperature coppercatalyzed atom-transfer radical addition (ATRA) in the presence of free-radical initiator (V-70) as a reducing agent. Chemistry A European Journal, 15, 38–41. DOI: 10.1002/chem.200802048.10.1002/chem.200802048Suche in Google Scholar
Pintauer, T. (2010). Catalyst regeneration in transition-metalmediated atom-transfer radical addition (ATRA) and cyclization (ATRC) reactions. European Journal of Inorganic Chemistry, 2010, 2449–2460. DOI: 10.1002/ejic.201000234.10.1002/ejic.201000234Suche in Google Scholar
Pintauer, T., & Matyjaszewski, K. (2012). Atom transfer radical polymerization (ATRP) and addition (ATRA) and applications. In C. Chatgilialoglu, & A. Studer (Eds.), Encyclopedia of radicals in chemistry, biology and materials (Vol. 1, chapter 62, pp. 1851–1894). Chichester, UK: Wiley.Suche in Google Scholar
Pirrung, F. O. H., Hiemstra, H., Kaptein, B., Martinez Sobrino, M. E., Petra, D. G. I., Schoemaker, H. E., & Speckamp, W. N. (1993). Diastereoselective synthesis of medium-sized lactones by Cu(bpy)Cl catalyzed cyclization of trichloroacetates. Synlett, 1993, 739–740. DOI: 10.1055/s-1993-22590.10.1055/s-1993-22590Suche in Google Scholar
Pirrung, F. O. H., Hiemstra, H., Speckamp, W. N., Kaptein, B., & Schoemaker, H. E. (1994). Synthesis of medium-sized lactones by the copper(I)chloride/2,2′-bipyridine-catalyzed cyclization of diand trichloroacetates. Tetrahedron, 50, 12415– 12442. DOI: 10.1016/s0040-4020(01)89549-1.10.1016/s0040-4020(01)89549-1Suche in Google Scholar
Pirrung, F. O. H., Hiemstra, H., Speckamp, W. N., Kaptein, B., & Schoemaker, H. E. (1995). Synthesis of enetiometrically pure eightand nine-membered lactones by copper(I) chloride/2,2′-bipyridine-catalyzed cyclization. Synthesis, 1995, 458–472. DOI: 10.1055/s-1995-4429.10.1055/s-1995-4429Suche in Google Scholar
Pirtsch, M., Paria, S., Matsuno, T., Isobe, H., & Reiser, O. (2012). [Cu(dap)2 Cl] as an effcient visible-light-driven photoredox catalyst in carbon–carbon bond-forming reactions. Chemistry A European Journal, 18, 7336–7340. DOI: 10.1002/chem.201200967.10.1002/chem.201200967Suche in Google Scholar
Qiu, J., Matyjaszewski, K., Thouin, L., & Amatore, C. (2000). Cyclic voltammetric studies of copper complexes catalyzing atom transfer radical polymerization. Macromolecular Chemistry and Physics 201, 1625–1631. DOI: 10.1002/1521-3935(20000901)201:14<1625::AID-MACP1625>3.0.CO;2-9.10.1002/1521-3935(20000901)201:14<1625::AID-MACP1625>3.0.CO;2-9Suche in Google Scholar
Quebatte, L., Thommes, K., & Severin, K. (2006). Highly efficient atom transfer radical addition reactions with a RuIII complex as a catalyst precursor. Journal of the American Chemical Society, 128, 7440–7441. DOI: 10.1021/ja0617542.10.1021/ja0617542Suche in Google Scholar
Ribelli, T. G., Konkolewicz, D., Bernhard, S., & Matyjaszewski, K. (2014a). How are radicals (re)generated in photochemical ATRP? Journal of the American Chemical Society, 136, 13303–13312. DOI: 10.1021/ja506379s.10.1021/ja506379sSuche in Google Scholar
Ribelli, T. G., Konkolewicz, D., Pan, X., & Matyjaszewski, K. (2014b). Contribution of photochemistry to activator regeneration in ATRP. Macromolecules, 47, 6316–6321. DOI: 10.1021/ma501384q.10.1021/ma501384qSuche in Google Scholar
Ricardo, C., & Pintauer, T. (2009). Copper catalyzed atom transfer radical cascade reactions in the presence of free-radical diazo initiators as reducing agents. Chemical Communications, 2009, 3029–3031. DOI: 10.1039/b905839g.10.1039/b905839gSuche in Google Scholar
Ricardo, C. L., & Pintauer, T. (2011). One-pot sequential azide–alkyne [3+2] cycloaddition and atom transfer radical addition (ATRA): Expanding the scope of in situ copper(I) regeneration in the presence of environmentally benign reducing agent. European Journal of Inorganic Chemistry, 2011, 1292–1301. DOI: 10.1002/ejic.201001335.10.1002/ejic.201001335Suche in Google Scholar
Ricardo, C. L., & Pintauer, T. (2012a). Highly effcient organic and macromolecular synthesis using sequential copper catalyzed azide-alkyne [3+2] cycloaddition and ATRA/ATRP. In K. Matyjaszewski, B. S. Sumerlin, & N. V. Tsarevsky (Eds.), Progress in controlled radical polymerization: Mechanisms and techniques (ACS symposium series, Vol. 1100, chapter 6, pp. 73–98). Washington, DC, USA: American Chemical Society. DOI: 10.1021/bk-2012-1100.ch006.10.1021/bk-2012-1100.ch006Suche in Google Scholar
Ricardo, C. L., & Pintauer, T. (2012b). Synthesis of functionalized polytriazoles via one-pot sequential copper-catalyzed azide–alkyne [3+2] cycloaddition and atom transfer radical addition (ATRA). Israel Journal of Chemistry, 52, 320–327. DOI: 10.1002/ijch.201100111.10.1002/ijch.201100111Suche in Google Scholar
Rossotti, F. J. C., & Rossotti, H. (1961). The determination of stability constants: And other equilibrium constants in solution (McGraw-Hill series in advanced chemistry). New York, NY, USA: McGraw-Hill.Suche in Google Scholar
Schröder, K., Konkolewicz, D., Poli, R., & Matyjaszewski, K. (2012a). Formation and possible reactions of organometallic intermediates with active copper(I) catalysts in ATRP. Organometallics, 31, 7994–7999. DOI: 10.1021/om3006883.10.1021/om3006883Suche in Google Scholar
Schröder, K., Mathers, R. T., Buback, J., Konkolewicz, D., Magenau, A. J. D., & Matyjaszewski, K. (2012b). Substituted tris(2-pyridylmethyl)amine ligands for highly active ATRP catalysts. ACS Macro Letters, 1, 1037–1040. DOI: 10.1021/mz3003787.10.1021/mz3003787Suche in Google Scholar PubMed
Schröder, K., Matyjaszewski, K., Noonan, K. J. T., & Mathers, R. T. (2014). Towards sustainable polymer chemistry with homogeneous metal-based catalysts. Green Chemistry, 16, 1673–1686. DOI: 10.1039/c3gc42159g.10.1039/c3gc42159gSuche in Google Scholar
Sebren, L. J., Devery, J. J., III, & Stephenson, C. R. J. (2014). Catalytic radical domino reactions in organic synthesis. ACS Catalysis, 4, 703–716. DOI: 10.1021/cs400995r.10.1021/cs400995rSuche in Google Scholar PubMed PubMed Central
Severin, K. (2006). Ruthenium catalysts for the Kharasch reaction. Current Organic Chemistry, 10, 217–224. DOI: 10.2174/138527206775192915.10.2174/138527206775192915Suche in Google Scholar
Sinnreich, J., & Asscher, M. (1972). Redox-transfer. Part VII. Addition of ethylene and butadiene to functionally substituted aromatic sulfonyl chlorides. Journal of the Chemical Society, Perkin Transactions 1, 1972, 1543–1545. DOI: 10.1039/p19720001543.10.1039/p19720001543Suche in Google Scholar
Steiner, E., Martin, P., & Belluš, D. (1982). Eine neue, einfache Synthese von 2,3,5-Trichlorpyridin. Helvetica Chimica Acta, 65, 983–985. DOI: 10.1002/hlca.19820650330. (in German)10.1002/hlca.19820650330Suche in Google Scholar
Tang, W., Tsarevsky, N. V., & Matyjaszewski, K. (2006). Determination of equilibrium constants for atom transfer radical polymerization. Journal of the American Chemical Society, 128, 1598–1604. DOI: 10.1021/ja0558591.10.1021/ja0558591Suche in Google Scholar PubMed
Tang, W., Kwak, Y., Braunecker, W., Tsarevsky, N. V., Coote, M. L., & Matyjaszewski, K. (2008). Understanding atom transfer radical polymerization: Effect of ligand and initiator structures on the equilibrium constants. Journal of the American Chemical Society, 130, 10702–10713. DOI: 10.1021/ja802290a.10.1021/ja802290aSuche in Google Scholar PubMed
Taylor, M. J. W., Eckenhoff, W. T., & Pintauer, T. (2010). Copper catalyzed atom transfer radical addition (ATRA) and cyclization (ATRC) reactions in the presence of environmentally benign ascorbic acid as a reducing agent. Dalton Transactions, 39, 11475–11482. DOI: 10.1039/c0dt01157f.10.1039/c0dt01157fSuche in Google Scholar PubMed
Thommes, K., Içli, B., Scopelliti, R., & Severin, K. (2007). Atom-transfer radical addition (ATRA) and cyclization (ATRC) reactions catalyzed by a mixture of [RuCl2Cp* (PPh3 )] and magnesium. Chemistry – A European Journal, 13, 6899–6907. DOI: 10.1002/chem.200700442.10.1002/chem.200700442Suche in Google Scholar PubMed
Treat, N. J., Sprafke, H., Kramer, J. W., Clark, P. G., Barton, B. E., Read de Alaniz, J., Fors, B. P., & Hawker, C. J. (2014). Metal-free atom transfer radical polymerization. Journal of the American Chemical Society, 136, 16096–16101. DOI: 10.1021/ja510389m.10.1021/ja510389mSuche in Google Scholar PubMed
Truce, W. E., & Wolf, G. C. (1971). Adducts of sulfonyl iodides with acetylenes. The Journal of Organic Chemistry, 36, 1727–1732. DOI: 10.1021/jo00812a001.10.1021/jo00812a001Suche in Google Scholar
Tsarevsky, N. V., Tang, W., Brooks, S. J., & Matyjaszewski, K. (2006). Factors determining the performance of copper-based atom transfer radical polymerization catalysts and criteria for rational catalyst selection. In K. Matyjaszewski (Ed.), Controlled/living radical polymerization: From synthesis to materials (ACS symposium series, Vol. 944, chapter 5, pp. 56–70). DOI: 10.1021/bk-2006-0944.ch005.10.1021/bk-2006-0944.ch005Suche in Google Scholar
Tsarevsky, N. V., & Matyjaszewski, K. (2007). “Green” atom transfer radical polymerization: From process design to preparation of well-deffned environmentally friendly polymeric materials. Chemical Reviews, 107, 2270–2299. DOI: 10.1021/cr050947p.10.1021/cr050947pSuche in Google Scholar PubMed
Tsarevsky, N. V., Braunecker, W. A., Vacca, A., Gans, P., & Matyjaszewski, K. (2007a). Competitive equilibria in atom transfer radical polymerization. Macromolecular Symposia, 248, 60–70. DOI: 10.1002/masy.200750207.10.1002/masy.200750207Suche in Google Scholar
Tsarevsky, N. V., Braunecker, W. A., & Matyjaszewski, K. (2007b). Electron transfer reactions relevant to atom transfer radical polymerization. Journal of Organometallic Chemistry, 692, 3212–3222. DOI: 10.1016/j.jorganchem.2007.01.051.10.1016/j.jorganchem.2007.01.051Suche in Google Scholar
Tsarevsky, N. V., & Matyjaszewski, K. (2013). Atom transfer radical polymerization (ATRP). In N. V Tsarevsky, & B. S. Sumerlin (Eds.), Fundamentals of controlled/living radical polymerization (RSC polymer chemistry series, Vol. 4, chapter 8, pp. 287–357). London, UK: Royal Society of Chemistry. DOI: 10.1039/9781849737425-00287.10.1039/9781849737425-00287Suche in Google Scholar
Vlček, A. A. (1963). Polarographic behavior of coordination compounds. In F. A. Cotton (Ed.), Progress in inorganic chemistry (Vol. 5, chapter 3, pp. 211–384). Hoboken, NJ, USA: Wiley. DOI: 10.1002/9780470166062.ch3.10.1002/9780470166062.ch3Suche in Google Scholar
Wallentin, C. J., Nguyen, J. D., Finkbeiner, P., & Stephenson, C. R. J. (2012). Visible light-mediated atom transfer radical addition via oxidative and reductive quenching of photocatalysts. Journal of the American Chemical Society, 134, 8875–8884. DOI: 10.1021/ja300798k.10.1021/ja300798kSuche in Google Scholar PubMed
Wang, J. S., & Matyjaszewski, K. (1995). Controlled/”living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society, 117, 5614–5615. DOI: 10.1021/ja00125a035.10.1021/ja00125a035Suche in Google Scholar
Wang, Y., Soerensen, N., Zhong, M., Schroeder, H., Buback, M., & Matyjaszewski, K. (2013). Improving the “livingness” of ATRP by reducing Cu catalyst concentration. Macromolecules, 46, 683–691. DOI: 10.1021/ma3024393.10.1021/ma3024393Suche in Google Scholar
Wolf, J., Thommes, K., Briel, O., Scopelliti, R., & Severin, K. (2008). Dinuclear ruthenium ethylene complexes: Syntheses, structures, and catalytic applications in ATRA and ATRC reactions. Organometallics, 27, 4464–4474. DOI: 10.1021/om8004096.10.1021/om8004096Suche in Google Scholar
Xue, G., Wang, D., De Hont, R., Fiedler, A. T., Shan, X., Münck, E., & Que, L., Jr. (2007). A synthetic precedent for the
Yang, D., Yan, Y. L., Zheng, B. F., Gao, Q., & Zhu, N. Y. (2006). Copper(I)-catalyzed chlorine atom transfer radical cyclization reactions of unsaturated α-chloro β-keto esters. Organic Letters, 8, 5757–5760. DOI: 10.1021/ol0623264.10.1021/ol0623264Suche in Google Scholar PubMed
Zhang, C. X., Kaderli, S., Costas, M., Kim, E. I., Neuhold, Y. M., Karlin, K. D., & Zuberbühler, A. D. (2003). Copper(I)–dioxygen reactivity of [(L)CuI ]+ (L = tris(2pyridylmethyl)amine): Kinetic/thermodynamic and spectroscopic studies concerning the formation of Cu–O2 and Cu2 – O2 aducts as a function of solvent medium and 4-pyridyl ligand substituent variations. Inorganic Chemistry, 42, 1807– 1824. DOI: 10.1021/ic0205684.10.1021/ic0205684Suche in Google Scholar PubMed
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Original Paper
- Mononuclear and heterodinuclear phenanthrolinedione complexes of d- and f-block elements‡
- Original Paper
- New heteroscorpionate lanthanide complexes for ring-opening polymerisation of ɛ-caprolactone and rac-lactide‡
- Original Paper
- EPR on bis(1,2-dithiosquarato)cuprate(II) in the bis(1,2-dithiosquarato)nickelate(II) host lattice – structure and spectroscopy‡
- Review
- Electric fields in zeolites: fundamental features and environmental implications‡
- Short Communication
- Mononuclear cobalt(III) complexes with N-salicylidene-2-hydroxy-5-bromobenzylamine and N-salicylidene-2-hydroxy-5-chlorobenzylamine‡
- Original Paper
- Nickel(II) complex with 1,4,7-tris(2-aminoethyl)-1,4,7-triazacyclononane‡
- Original Paper
- SOD mimetic activity of salicylatocopper complexes‡
- Original Paper
- Copper oxalate complexes: synthesis and structural characterisation‡
- Review
- Towards the development of highly active copper catalysts for atom transfer radical addition (ATRA) and polymerization (ATRP)‡
- Original Paper
- Synthesis, DFT calculations and characterisation of new mixed Pt(II) complexes with 3-thiolanespiro-5′ 1-hydantoin and 4-thio-1H-tetrahydropyranspiro-5′-hydantoin‡
- Short Communication
- Formation of coordination compounds with aniline in the interlayer space of Ca2+-, Cu2+- and Fe3+-exchanged montmorillonite‡
- Original Paper
- Self-assembly hydrogen-bonded supramolecular arrays from copper(II) halogenobenzoates with nicotinamide:Structure and EPR spectra‡
- Original Paper
- Different structural types of copper(II) furan- and thiophencarboxylates: X-ray structural, EPR, spectral and magnetic analyses‡
- Preface
- XXV. International Conference on Coordination & Bioinorganic Chemistry (25th ICCBiC), June 2015, Slovakia
Artikel in diesem Heft
- Original Paper
- Mononuclear and heterodinuclear phenanthrolinedione complexes of d- and f-block elements‡
- Original Paper
- New heteroscorpionate lanthanide complexes for ring-opening polymerisation of ɛ-caprolactone and rac-lactide‡
- Original Paper
- EPR on bis(1,2-dithiosquarato)cuprate(II) in the bis(1,2-dithiosquarato)nickelate(II) host lattice – structure and spectroscopy‡
- Review
- Electric fields in zeolites: fundamental features and environmental implications‡
- Short Communication
- Mononuclear cobalt(III) complexes with N-salicylidene-2-hydroxy-5-bromobenzylamine and N-salicylidene-2-hydroxy-5-chlorobenzylamine‡
- Original Paper
- Nickel(II) complex with 1,4,7-tris(2-aminoethyl)-1,4,7-triazacyclononane‡
- Original Paper
- SOD mimetic activity of salicylatocopper complexes‡
- Original Paper
- Copper oxalate complexes: synthesis and structural characterisation‡
- Review
- Towards the development of highly active copper catalysts for atom transfer radical addition (ATRA) and polymerization (ATRP)‡
- Original Paper
- Synthesis, DFT calculations and characterisation of new mixed Pt(II) complexes with 3-thiolanespiro-5′ 1-hydantoin and 4-thio-1H-tetrahydropyranspiro-5′-hydantoin‡
- Short Communication
- Formation of coordination compounds with aniline in the interlayer space of Ca2+-, Cu2+- and Fe3+-exchanged montmorillonite‡
- Original Paper
- Self-assembly hydrogen-bonded supramolecular arrays from copper(II) halogenobenzoates with nicotinamide:Structure and EPR spectra‡
- Original Paper
- Different structural types of copper(II) furan- and thiophencarboxylates: X-ray structural, EPR, spectral and magnetic analyses‡
- Preface
- XXV. International Conference on Coordination & Bioinorganic Chemistry (25th ICCBiC), June 2015, Slovakia