Home Different structural types of copper(II) furan- and thiophencarboxylates: X-ray structural, EPR, spectral and magnetic analyses‡
Article
Licensed
Unlicensed Requires Authentication

Different structural types of copper(II) furan- and thiophencarboxylates: X-ray structural, EPR, spectral and magnetic analyses

  • Petra Bertová EMAIL logo , Vladimír Kuchtanin , Zdeňka Růžičková , Ján Moncoľ , Jozef Švorec and Peter Segľa
Published/Copyright: January 22, 2016
Become an author with De Gruyter Brill

Synthesis and characterization of eight new complexes of various structural types are reported. With 5-nitro-2-furancarboxylic acid (5-NO2-2-fucH), two monomeric complexes, [Cu(5-NO2-2-fuc)2(H2O)2] (II) and [Cu(5-NO2-2-fuc)2(H2O)4] (III), as well as a dimeric complex with ethylnicotinate (Etnic), [Cu(5-NO2-2-fuc)2(Etnic)2]2 (V), were prepared. With other acids: 2,5-dimethyl-3-furancarboxylic acid (2,5-Me2-3-fucH), 2-thiophencarboxylic acid (2-tpcH), 3-methyl-2-thiophencarboxylic acid (3-Me-2-tpcH) or 5-methyl-2-thiophencarboxylic acid (5-Me-2-tpcH), only dimeric complexes [Cu(2,5-Me2-3-fuc)2(H2O)]2 (I), [Cu(2,5-Me2-3-fuc)2(Etnic)]2 (IV), [Cu(2-tpc)2(Etnic)]2 (VI), [Cu(3-Me-2-tpc)2(Etnic)]2 (VII) and Cu(5-Me-2-tpc)2 (Etnic)]2 (VIII) have been synthesised. Characterizations of the complexes were based on elemental analysis and infrared, electronic, EPR and magnetic measurements. Moreover, complexes III, V, VII and VIII were also studied by X-ray structural analysis. Two structural types of dimeric complexes were observed differing in the number of carboxylate bridges. Most of the dinuclear complexes exhibit the common “paddle-wheel” structural motif while the molecular structure of V contains two pentacoordinated copper(II) ions bridged by two carboxylate groups of two 5-nitro-2-furancarboxylate ligands resulting in the intramolecular copper-copper distance of 4.4960(8) Å. Magnetic properties (monomeric EPR signal and isotropic exhchange constant (J of approximately 0 cm−1) of V confirmed a very weak magnetic interaction between copper centres.


Presented at the XXV. International Conference on Coordination and Bioinorganic Chemistry, Smolenice, Slovakia, 31 May–5 June 2015.


Acknowledgements

Slovak grant agencies VEGA (VEGA 1/0472/13, 1/0765/14) and APVV (APVV-14-0078) are acknowledged for financial support.


Supplementary data

CCDC 1051802 and 1051804–1051806 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, IK; dax: (+44) 1223-336-033; or e-mail: .


References

Bencini, A., & Gatteschi, D. (1990). EPR of exchange-coupled systems. Berlin, Germany: Springer.Search in Google Scholar

Betteridge, P. W., Carruthers, J. R., Copper, R. I., Prout, K., & Watkin, D. J. (2003). CRYSTALS version 12: software for guided crystal structure analysis. Journal of Applied Crystallography, 36, 1487. DOI: 10.1107/s0021889803021800.10.1107/s0021889803021800Search in Google Scholar

Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2015). The anatomy of a comprehensive constrained, restrained reffnement program for the modern computing environment Olex2 dissected. Acta Crystallographica, Section A: Foundation and Advances, 71, 59–75. DOI: 10.1107/s2053273314022207.10.1107/s2053273314022207Search in Google Scholar

Bruker (2001). SADABS [computer software]. Madison, WI, USA: Bruker.Search in Google Scholar

Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A., & Polidori, G. (2015). Crystal structure determination and refinement via SIR2014. Journal of Applied Crystallography, 48, 306–309. DOI: 10.1107/s1600576715001132.10.1107/s1600576715001132Search in Google Scholar

Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Jezierska, J., & Ozarowski, A. (2011). A new Cu/Zn carboxylato-bridged 1D polymer: Direct synthesis, X-ray structure and magnetic properties. Inorganica Chimica Acta, 373, 27–31. DOI: 10.1016/j.ica.2011.03.040.10.1016/j.ica.2011.03.040Search in Google Scholar

Catterick, J., & Thornton, P. (1977). Structures and physical properties of polynuclear carboxylates. Advances in In-organic Chemistry and Radiochemistry, 20, 291–362. DOI: 10.1016/s0065-2792(08)60041-2.10.1016/s0065-2792(08)60041-2Search in Google Scholar

Chen, C. L., Zou, Y., Qiu, P., Wen, Y. H., Li, J. Y., Hong, Z. H., Lin, X. M., Xu, A. X., & Cai, Y. P. (2009). Synthesis and characterization of two temperature-dependent copper(II) complexes based on 2,6-dimethylpyridine-3,5-dicarboxylate. Journal of Coordination Chemistry, 62, 2480–2489. DOI: 10.1080/00958970902862636.10.1080/00958970902862636Search in Google Scholar

Davies, H. O., Gillard, R. D., Hursthouse, M. B., & Karaulov, A. (1995). Natural glycine unidentate on copper(II): a novel mode of bonding. Journal of the Chemical Society, Dalton Transactions, 1995, 2333–2336. DOI: 10.1039/dt9950002333.10.1039/dt9950002333Search in Google Scholar

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, reffnement and analysis program. Journal of Applied Crystallography, 42, 339–341. DOI: 10.1107/s0021889808042726.10.1107/s0021889808042726Search in Google Scholar

Etaiw, S. E. H., Sultan, A. S., & El-bendary, M. M. (2011). In vitro and in vivo activity of novel 3D-organotin supramolecular coordination polymers based on CuCN and pyridine bases. Journal of Organometallic Chemistry, 696, 1668–1676. DOI: 10.1016/j.jorganchem.2011.02.003.10.1016/j.jorganchem.2011.02.003Search in Google Scholar

Groom, C. R., & Allen, F. H. (2014). The Cambridge structural database in retrospect and prospect. Angewandte Chemie International Edition, 53, 662–671. DOI: 10.1002/anie.201306438.10.1002/anie.201306438Search in Google Scholar PubMed

Guo, J. Y., Zhang, T. L., Zhang, J. G., Liu, Y. H., & Yu, K. B. (2006). Direct synthesis, crystal structures and thermal analyses of the two-dimensional Cu(ntp)2 (H2O)4 crystal (ntp = 2-nitroterephthalate. Chinese Journal of Inorganic Chemistry, 22, 995–999.Search in Google Scholar

Huang, J., Li, Y. Z., Sun, G. C., Dai, R. B., Li, Q. X., Wang, L. F., & Xia, C. G. (2000). Tetraaqua(5-fluorouracil-1-acetatoO )copper(II) tetrahydrate. Acta Crystallographica, Section C: Crystal Structure Communications, 56, e489–e490. DOI: 10.1107/s0108270100013044.10.1107/s0108270100013044Search in Google Scholar

In, Y., Hayashi, C., & Ishida, T. (1997). Metal dependent coordination of biomolecular ligand: X-ray crystal structures of copper, cobalt and calcium complexes of (3-hydroxy-5(hydroxymethyl)-2-methylisonicotinic acid) 5-phosphate, an oxidized pyridoxal 5-phosphate. Inorganica Chimica Acta, 260, 111–118. DOI: 10.1016/s0020-1693(96)05538-7.10.1016/s0020-1693(96)05538-7Search in Google Scholar

Karpova, E. V., Boltalin, A. I., Zakharov, M. A., Sorokina, N. I., Korenev, Y. M., & Troyanov, S. I. (1998). Synthesis and crystal structure of copper(II) triffuoroacetates, Cu2 (CF3 COO)4·2CH3 CN and Cu(CF3 COO)2 (H2O)4. Zeitschrift für Anorganische und Allgemeine Chemie, 624, 741–744. DOI: 10.1002/SICI)1521-3749(199804)624:4741::AID-ZAAC741>3.0.CO;2-4.10.1002/SICI)1521-3749(199804)624:4<741::AID-ZAAC741>3.0.CO;2-4Search in Google Scholar

Kato, M., & Muto, Y. (1988). Factors affecting the magnetic properties of dimeric copper(II) complexes. Coordination Chemistry Reviews, 92, 45–83. DOI: 10.1016/00108545(88)85005-7.10.1016/00108545(88)85005-7Search in Google Scholar

Kennard, C. H. L., Stewart, S. W., O’Reilly, E. J., Smith, G., & White, A. H. (1985). Metal-phenoxyalkanoic acid interactions-XVI. Molecular structures of the divalent cobalt, copper, manganese, nickel and zinc complexes with (2nitrophe. Polyhedron, 4, 697–705. DOI: 10.1016/s0277-5387(00)86685-1.10.1016/s0277-5387(00)86685-1Search in Google Scholar

König, E. (1966). Magnetic properties of coordination and organometalic transition metal compounds. Exeter, UK: Springer-Verlag.Search in Google Scholar

Kuchtanin, V., Moncol’, J., Mroziński, J., Kalińska, B., Padělková, Z., Švorec, J., Segffa, P., & Melník, M. (2013). Study of copper(II) thiophenecarboxylate complexes with Nmethylnicotinamide. Polyhedron, 50, 546–555. DOI: 10.1016/j.poly.2012.11.041.10.1016/j.poly.2012.11.041Search in Google Scholar

McGowan, P. C. (2005). Metal complexes as pharmaceuticals. Annual Reports Section “A” (Inorganic Chemistry), 101, 631–648. DOI: 10.1039/b413633k.10.1039/b413633kSearch in Google Scholar

Melník, M. (1981). Mono-, bi-, tetraand polynuclear copper(II) halogenocarboxylates. Coordination Chemistry Reviews, 36, 1–44. DOI: 10.1016/s0010-8545(00)80504-4.10.1016/s0010-8545(00)80504-4Search in Google Scholar

Melník, M. (1982). Study of the relation between the structural data and magnetic interaction in oxo-bridged binuclear copper(II) compounds. Coordination Chemistry Reviews, 42, 259–293. DOI: 10.1016/s0010-8545(00)80537-8.10.1016/s0010-8545(00)80537-8Search in Google Scholar

Melník, M., Kabešová, M., Koman, M., Macášková, L., Garaj, J., Holloway, C. E., & Valent, A. (1998). Copper(II) coordination compounds: Classiffcation and analysis of crystallographic and structural data III. Dimeric compounds. Journal of Coordination Chemistry, 45, 147–359. DOI: 10.1080/00958979808027144.10.1080/00958979808027144Search in Google Scholar

Moncol J., Mudra, M., Lönnecke, P., Hewitt, M., Valko, M., Morris, H., Svorec, J., Melnik, M., Mazur, M., & Koman, M. (2007). Crystal structures and spectroscopic behavior of monomeric, dimeric and polymeric copper(II) chloroacetate adducts with isonicotinamide, N-methylnicotinamide and N, N-diethylnicotinamide. Inorganica Chimica Acta, 360, 3213– 3225. DOI: 10.1016/j.ica.2007.03.27.10.1016/j.ica.2007.03.27Search in Google Scholar

Moncol’, J., Kuchtanin, V., Polakovičová, P., Mroziński, J., Kalińska, B., Koman, M., Padělková, Z., Segffa, P., & Melník, M. (2012). Study of copper(II) thiophenecarboxylate complexes with nicotinamide. Polyhedron, 45, 94–102. DOI: 10.1016/j.poly.2012.07.069.10.1016/j.poly.2012.07.069Search in Google Scholar

Nakamoto, K. (1997). Infrared and Raman spectra of inorganic and coordination compounds. New York, NY, USA: Wiley.Search in Google Scholar

Ozarowski, A. (2008). The zero-field-splitting parameter D in binuclear copper(II) carboxylates is negative. Inorganic Chemistry, 47, 9760–9762. DOI: 10.1021/ic801560e.10.1021/ic801560eSearch in Google Scholar PubMed

Ozarowski, A., Szymańska, I. B., Muzio-l, T., & Jezierska, J. (2009). High-field EPR and magnetic susceptibility studies on binuclear and tetraniclear copper triffuoroacetate complexes. X-ray structure determination of three tetranuclear quinoline adducts of copper(II) triffuoroacetate. Journal of the American Chemical Society, 131, 10279–10292. DOI: 10.1021/ja902695y.10.1021/ja902695ySearch in Google Scholar PubMed

Palatinus, L., & Chapuis, G. (2007). SUPERFLIP a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 786–790. DOI: 10.1107/s0021889807029238.10.1107/s0021889807029238Search in Google Scholar

Paluchowska, B., Maurin, J. K., & Leciejewicz, J. (1998). Dinuclear copper(II) complexes with 3-furancarboxylic acid and 2-thiophenecarboxylic acid. Journal of Coordination Chemistry, 44, 183–192. DOI: 10.1080/00958979808022892.10.1080/00958979808022892Search in Google Scholar

Perec, M., & Baggio, R. (2010). Di-μ-acetato-bis[(acetato)δ2 O,O’)bis(isonicotinamide-δN)copper(II)]. Acta Crystallographica, Section E: Structure Reports Online, 66, m275– m276. DOI: 10.1107/s1600536810004393.10.1107/s1600536810004393Search in Google Scholar

Segffa, P., Palicová, M., Mikloš, D., Koman, M., Melník, M., Korábik, M., Mroziński, J., G-lowiak, T., Sundberg, M. R., & Lönnecke, P. (2004). Synthesis, spectral and magnetic properties, and crystal structures of copper(II) pyridinecarboxylate adducts with N-heterocyclic ligands. Zeitschrift für Anorganische und Allgemeine Chemie, 630, 470–478. DOI: 10.1002/zaac.200300365.10.1002/zaac.200300365Search in Google Scholar

Sertçelik, M., Çaylak Delibas, N., Necefoglu, H., & Hökelek, T. (2013). Bis(μ-4-formylbenzoato-δ2O:O’)bis[(4-formylbenzoato-δ2 O,O’)bis(isonicotinamide-δN1)copper(II)]. Acta Crystallographica, Section E: Structure Reports, 69, m290–m291. DOI: 10.1107/s1600536813010908.10.1107/s1600536813010908Search in Google Scholar PubMed PubMed Central

Sheldrick, G. M. (2015a). SHELXT Integrated space-group and crystal structure determination. Acta Crystallographica, Section A: Foundation and Advances, 71, 3–8. DOI: 10.1107/s2053273314026370.10.1107/s2053273314026370Search in Google Scholar PubMed PubMed Central

Sheldrick, G. M. (2015b). Crystal structure reffnement with SHELXL. Acta Crystallographica, Section C: Structural Chemistry, 71, 3–8. DOI: 10.1107/s2053229614024218.10.1107/s2053229614024218Search in Google Scholar

Siddiqi, Z. A., Khalid, M., Kumar, S., Shahid, M., & Noor, S. (2010). Antimicrobial and SOD activities of novel transition metal complexes of pyridine-2,6-dicarboxylic acid containing 4-picoline as auxilliary ligand. European Journal of Medicinal Chemistry, 45, 264–269. DOI: 10.1016/j.ejmech.2009.10.005.10.1016/j.ejmech.2009.10.005Search in Google Scholar

Siemens (1994). XEMP, Siemens analytical X-ray instruments. Madison, WI, USA: Siemens.Search in Google Scholar

Smith, G., & Wermuth, U. D. (2010). The structure of the copper(II) complex with 4,5-dichlorophthalic acid: The 1:1 complex ‘adduct’ salt trans-tetraaqua(2-carboxy-4,5dichlorobenzoato)(4,5-dichlorobenzene-1,2-dicarb oxylic acid) copper(II) 2-carboxy-4,5-dichlorobenzoate. Journal of Chemical Crystallography, 40, 151–155. DOI: 10.1007/s10870-0099623-z.10.1007/s10870-0099623-zSearch in Google Scholar

Stomberg, R., & Lundquist, K. (1989). The crystal structure of tetraaquabis[(2-methoxyphenoxy)-acetato]copper(II), [Cu(C9 H9O4 )2 (H2 O)4 ]. Acta Chemica Scandinavica, 43, 160–163. DOI: 10.3891/acta.chem.scand.43-0160.10.3891/acta.chem.scand.43-0160Search in Google Scholar

Švorec, J., Valko, M., Moncol’, J., Mazúr, M., Melník, M., & Telser, J. (2009). Determination of intermolecular copper– copper distances from the EPR half-field transitions and their comparison with distances from X-ray structures: applications to copper(II) complexes with biologically important ligands. Transition Metal Chemistry, 34, 129–134. DOI: 10.1007/s11243-008-9168-6.10.1007/s11243-008-9168-6Search in Google Scholar

Švorec, J., Polakovičová, P., Moncol’, J., Kuchtanin, V., Breza, M., Šoralová, S., Padělková, Z., Mrozinski, J., Lis, T., & Segffa, P. (2014). Structural, magnetic and quantum-chemical study of dinuclear copper(II) thiophenecarboxylate and furancarboxylate complexes. Polyhedron, 81, 216–226. DOI: 10.1016/j.poly.2014.05.071.10.1016/j.poly.2014.05.071Search in Google Scholar

Swaminathan, S., & Alangaden, G. J. (2010). Treatment of resistant enterococcal urinary tract infections. Current Infectious Disease Reports, 12, 455–464. DOI: 10.1007/s11908010-0138-8.10.1007/s11908010-0138-8Search in Google Scholar

Telser, J., Krzystek, J., & Ozarowski, A. (2014). High-frequency and high-field electron paramagnetic resonance (HFEPR): a new spectroscopic tool for bioinorganic chemistry. JBIC Journal of Biological Inorganic Chemistry, 19, 297–318. DOI: 10.1007/s00775-013-1084-3.10.1007/s00775-013-1084-3Search in Google Scholar

Weder, J. E., Dillon, C. T., Hambley, T. W., Kennedy, B. J., Lay, P. A., Biffn, J. R., Regtop, H. L., & Davies, N. M. (2002). Copper complexes of non-steroidal anti-inffammatory drugs: an opportunity yet to be realized. Coordination Chemistry Reviews, 232, 95–126. DOI: 10.1016/s0010-8545(02)00086-3.10.1016/s0010-8545(02)00086-3Search in Google Scholar

Yang, E. C., Feng, W., Wang, J. Y., & Zhao, X. J. (2010). Crystal structure, thermal stability and theoretical investigation on four 1,3-bis(1,2,4-triazol-1-yl)propane-based copper(II) complexes. Inorganica Chimica Acta, 363, 308–316. DOI: 10.1016/j.ica.2009.10.014.10.1016/j.ica.2009.10.014Search in Google Scholar

Yenikaya, C., Poyraz, M., Sarı, M., Demirci, F., Ýlkimen, H., & Büyükgüngör, O. (2009). Synthesis, characterization and biological evaluation of a novel Cu(II) complex with the mixed ligands 2,6-pyridinedicarboxylic acid and 2-aminopyridine. Polyhedron, 28, 3526–3532. DOI: 10.1016/j.poly.2009.05.079.10.1016/j.poly.2009.05.079Search in Google Scholar

Yeşilela, O. Y., ö lmez, H., Uçar, I., Bulut, A., & Kazak, C. (2005). Synthesis, spectrothermal behaviour and molecular structure of aquaorotatotriethanolaminenickel(II) monohydrate. Zeitschrift für Anorganische und Allgemeine Chemie, 631, 3100–3103. DOI: 10.1002/zaac.200500297.10.1002/zaac.200500297Search in Google Scholar

Yuan, S., & Li, X. D. (2008). Crystal structure of tetraaquacis-bis(4-(sulfonylglycinato)benzoato)-copper(II), Cu(H2O)4 (C9H8NO6S)2. Zeitschrift für Kristallographie – New Crystal Structures, 223, 267–268. DOI: 10.1524/ncrs.2008.0113.10.1524/ncrs.2008.0113Search in Google Scholar

Received: 2015-5-12
Revised: 2015-9-6
Accepted: 2015-9-9
Published Online: 2016-1-22
Published in Print: 2016-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. Mononuclear and heterodinuclear phenanthrolinedione complexes of d- and f-block elements
  3. Original Paper
  4. New heteroscorpionate lanthanide complexes for ring-opening polymerisation of ɛ-caprolactone and rac-lactide
  5. Original Paper
  6. EPR on bis(1,2-dithiosquarato)cuprate(II) in the bis(1,2-dithiosquarato)nickelate(II) host lattice – structure and spectroscopy
  7. Review
  8. Electric fields in zeolites: fundamental features and environmental implications
  9. Short Communication
  10. Mononuclear cobalt(III) complexes with N-salicylidene-2-hydroxy-5-bromobenzylamine and N-salicylidene-2-hydroxy-5-chlorobenzylamine
  11. Original Paper
  12. Nickel(II) complex with 1,4,7-tris(2-aminoethyl)-1,4,7-triazacyclononane
  13. Original Paper
  14. SOD mimetic activity of salicylatocopper complexes
  15. Original Paper
  16. Copper oxalate complexes: synthesis and structural characterisation
  17. Review
  18. Towards the development of highly active copper catalysts for atom transfer radical addition (ATRA) and polymerization (ATRP)
  19. Original Paper
  20. Synthesis, DFT calculations and characterisation of new mixed Pt(II) complexes with 3-thiolanespiro-5′ 1-hydantoin and 4-thio-1H-tetrahydropyranspiro-5′-hydantoin
  21. Short Communication
  22. Formation of coordination compounds with aniline in the interlayer space of Ca2+-, Cu2+- and Fe3+-exchanged montmorillonite
  23. Original Paper
  24. Self-assembly hydrogen-bonded supramolecular arrays from copper(II) halogenobenzoates with nicotinamide:Structure and EPR spectra
  25. Original Paper
  26. Different structural types of copper(II) furan- and thiophencarboxylates: X-ray structural, EPR, spectral and magnetic analyses
  27. Preface
  28. XXV. International Conference on Coordination & Bioinorganic Chemistry (25th ICCBiC), June 2015, Slovakia
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0204/html
Scroll to top button