Home Synthesis, DFT calculations and characterisation of new mixed Pt(II) complexes with 3-thiolanespiro-5′ 1-hydantoin and 4-thio-1H-tetrahydropyranspiro-5′-hydantoin‡
Article
Licensed
Unlicensed Requires Authentication

Synthesis, DFT calculations and characterisation of new mixed Pt(II) complexes with 3-thiolanespiro-5′ 1-hydantoin and 4-thio-1H-tetrahydropyranspiro-5′-hydantoin

  • Adriana Bakalova EMAIL logo , Boryana Nikolova-Mladenova , Rossen Buyukliev , Emiliya Cherneva , Georgi Momekov and Darvin Ivanov
Published/Copyright: January 22, 2016
Become an author with De Gruyter Brill

Cisplatin is an anticancer drug widely used in the treatment of a wide range of solid tumours (head and neck, lung, bladder etc.), testicular and ovarian cancers. Because of its severe toxicity profile and spontaneous development of drug resistance in tumours, a number of Pt(II) complexes have been synthesised and tested for anti-tumour activity. Some of the investigations have focused on using ligands bearing donor atoms other than N (e.g., S, P, O). Two new mixed Pt(II)complexes of the general formula cis-[Pt(NH3)LCl2 ] where L is 3-thiolanespiro-5′ -hydantoin and 4-thio-1H-tetrahydropyranspiro-5′-hydantoin were synthesised. The complexes were studied by elemental analysis, melting points, IR and 1H NMR spectra. The hybrid DFT calculations were used for optimisation of the structure geometries of the ligands III, IV and their Pt(II) complexes V and VI. The structural parameters so calculated, such as bond lengths and angles, are in good agreement with the experimental data for similar hydantoins and their platinum complexes. The results showed that the geometries of complexes V and VI are plane square and the bounding of ligands III and IV with platinum ions is effected by the sulphur atom from the cyclic ring. The complexes thus obtained were chemically examined in comparison with previously synthesised and published complexes of the general formula cis-[PtL2 Cl2] (VII and VIII ) with the same ligands. The new compounds V and VI, as well as the previously investigated complexes (VII and VIII ), were analysed for cytotoxicity in vitro on SKW-3 and HL-60 human tumour cell lines. The results showed that all the complexes exerted concentration-dependent anti-proliferative activity.Qc 2015 Institute of Chemistry, Slovak Academy of Sciences


Presented at the XXV. International Conference on Coordination and Bioinorganic Chemistry, Smolenice, Slovakia, 31 May–5 June 2015.


References

Abdulrahman, L. K., Al-Mously, M. M., Al-Mosuli, M. L., & Al-Azzawii, K. K. (2013). The biological activity of 5,51 imidazolodine-2,4-dione derivatives. International Journal of Pharmacy and Pharmaceutical Sciences, 5, 494–504.Search in Google Scholar

Abu-Surrah, A. S., & Kettunen, M. (2006). Platinum group antitumor chemistry: Design and development of new anticancer drugs complementary to cisplatin. Current Medicinal Chemistry, 13, 1337–1357. DOI: 10.2174/092986706776872970.10.2174/092986706776872970Search in Google Scholar PubMed

Bakalova, A., Varbanov, H., Buyukliev, R., Stanchev, S., Momekov, G., & Ivanov, D. (2010). Novel Pt(II) and Pt(IV) complexes with 3-amino-5-methyl-5-(4-pyridyl)-2,4imidazolidenedione. Synthesis, physicochemical, chemometric and pharmacological investigation. Inorganica Chimica Acta, 363, 1568–1576. DOI: 10.1016/j.ica.2010.01.008.10.1016/j.ica.2010.01.008Search in Google Scholar

Bakalova, A., Buyukliev, R., Momekov, G., & Ivanov, D. (2013). Synthesis and cytotoxic activity of new platinum and palladium complexes with 3-amino-α-tetralonespiro-51 -hydantoin. Journal of Chemical Technology and Metallurgy, 48, 631– 636.Search in Google Scholar

Bakalova, A., Buyukliev, R., & Momekov, G. (2015). Synthesis, DFT calculations and cytotoxic investigation of platinum complexes with 3-thiolanespiro-51-hydantoin and 4-thio-1Htetrahydropyranespiro-51 -hydantoin. Journal of Molecular Structure, 1091, 118–124. DOI: 10.1016/j.molstruc.2015.02.055.10.1016/j.molstruc.2015.02.055Search in Google Scholar

Bierbach, U., Qu, Y., Hambley, T. W., Peroutka, J., Nguyen, H. L., Doedee, M., & Farell, N. (1999). Synthesis, structure, biological activity and DNA binding of platinum(II) complexes of the type trans-[PtCl2 (NH3)L] (L = planar nitrogen base) Effect of L and cis/trans isomerism on sequence speciffcity and unwinding properties observed in globally platinated DNA. Inorganic Chemistry, 38, 3535–3542. DOI: 10.1021/ic.981181x.10.1021/ic.981181xSearch in Google Scholar

Bogdanović, G., Kojić, V., Srdić, T., Jakimov, D., Djuran, M. I., Bugarčić, Ž. D., Baltić, M., & Baltić, V. V. (2002). Growth effects of some platinum(II) complexes with sulphur-containing carrier ligands on MCF7 human breast cancer cell line upon simultaneous administration with taxol. Metal-Based Drugs, 9, 33–43. DOI: 10.1155/mbd.2002.33.10.1155/mbd.2002.33Search in Google Scholar PubMed PubMed Central

Bugarčić, Ž. D., Bogojeski, J., Petrović, B., Hochreuther, S., & van Eldik, R. (2012). Mechanistic studies on the reactions of platinum(II) complexes with nitrogen and sulphur-donor biomolecules. Dalton Transactions, 41, 12329–12345. DOI: 10.1039/c2dt31045g.10.1039/c2dt31045gSearch in Google Scholar PubMed

Dylag, D., Zygmunt, M., Maciag, D., Handzlik, D., Bednarski, M., Filipek, B., & Kieć-Kinonowicz, K. (2004). Synthesis and evaluation of in vivo activity of diphenylhydantoin basic derivatives. European Journal of Medicinal Chemistry, 39, 1013–1027. DOI: 10.1016/j.ejmech.2004.05.008.10.1016/j.ejmech.2004.05.008Search in Google Scholar PubMed

Friebolin, W., Schilling, G., Zöller, M., & Amtmann, E. (2004). Synthesis and structure–activity relationship of novel antitumoral platinum xanthate complexes. Journal of Medicinal Chemistry, 47, 2256–2263. DOI: 10.1021/jm0309405.10.1021/jm0309405Search in Google Scholar PubMed

Frisch, M. J., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., Petersson, G., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H., Izmaylov, A., Bloino, J., Zheng, G., Sonnenberg, J., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J., Peralta, J., Ogliaro, F., Bearpark, M., Heyd, J., Brothers, E., Kudin, K., Staroverov, V., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J., Iyengar, S., Tomasi, J., Cossi, M., Rega, N., Millam, J., Klene, M., Knox, J., Cross, J., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R., Yazyev, O., Austin, A., Cammi, R., Pomelli, C., Ochterski, J., Martin, R., Morokuma, K., Zakrzewski, V., Voth, G., Salvador, P., Dannenberg, J., Dapprich, S., Daniels, A., Farkas, O., Foresman, J., Ortiz, J., Cioslowski, J., & Fox, D. (2009). Gaussian 09, Revision A1, [computer software]. Wallingford, CT, USA: Gaussian.Search in Google Scholar

Ghani, N. T. A., & Mansour, A. M. (2011). Structural and in vitro cytotoxicity studies on 1H-benzimidazol-2-ylmethylN-phenyl amine and its Pd(II) and Pt(II) complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 81, 529–543. DOI: 10.1016/j.saa.2011.06.046.10.1016/j.saa.2011.06.046Search in Google Scholar PubMed

Kavitha, C. V., Nambiar, M., Kumar, C. S. A., Choudhary, B., Muniyappa, K., Rangappa, K., & Raghavan, S. C. (2009). Novel derivatives of spirohydantoin induce growth inhibition followed by apoptosis in leukemia cells. Biochemical Pharmacology, 77, 348–363. DOI: 10.1016/j.bcp.2008.10.018.10.1016/j.bcp.2008.10.018Search in Google Scholar PubMed

Konstantinov, S. M., Eibl, H., & Berger, M. R. (1999). BCRABL inffuences the antileukaemic effcacy of alkylphosphocholines. British Journal of Haematology, 107, 365–374. DOI: 10.1046/j.1365-2141.1999.01700.x.10.1046/j.1365-2141.1999.01700.xSearch in Google Scholar

Kruger, G., Mdluli, P. S., Power, T. D., Raasch, T., & Singh, A. (2006). Experimental and computational studies of the regioselective protection of hydantoins using anhydride. Journal of Molecular Structure, 771, 165–170. DOI: 10.1016/j.theochem.2006.03.037.10.1016/j.theochem.2006.03.037Search in Google Scholar

Lee, C. T., Yang, W. T., & Parr, R. G. (1988). Development of the Cole–Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. DOI: 10.1103/physrevb.37.785.10.1103/physrevb.37.785Search in Google Scholar

Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunology Methods, 65, 55–63. DOI: 10.1016/0022-1759(83)90303-4.10.1016/0022-1759(83)90303-4Search in Google Scholar

Nakamoto, K. (1978). Infrared and Raman spectra of inorganic and coordination compounds (3rd ed.). New York, NY, USA: Wiley.Search in Google Scholar

Rosenberg, B., Vancamp, L., Trosko, J. E., & Mansour, V. H. (1969). Platinum compounds: a new class of potent antitumor agents. Nature, 222, 385–386. DOI: 10.1038/222385a0.10.1038/222385a0Search in Google Scholar PubMed

Stephens, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. (1994). Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. The Journal of Physical Chemistry, 98, 11623–11627. DOI: 10.1021/j100096a001.10.1021/j100096a001Search in Google Scholar

Thenmozhiyal, J. C., Wong, P. T. H., & Chui, W. K. (2004). Anticonvulsant activity of phenylmethylenehydantoins: A structure-activity relationship study. Journal of Medicinal Chemistry, 47, 1527–1535. DOI: 10.1021/jm030450c.10.1021/jm030450cSearch in Google Scholar PubMed

Received: 2015-3-13
Revised: 2015-6-19
Accepted: 2015-8-12
Published Online: 2016-1-22
Published in Print: 2016-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. Mononuclear and heterodinuclear phenanthrolinedione complexes of d- and f-block elements
  3. Original Paper
  4. New heteroscorpionate lanthanide complexes for ring-opening polymerisation of ɛ-caprolactone and rac-lactide
  5. Original Paper
  6. EPR on bis(1,2-dithiosquarato)cuprate(II) in the bis(1,2-dithiosquarato)nickelate(II) host lattice – structure and spectroscopy
  7. Review
  8. Electric fields in zeolites: fundamental features and environmental implications
  9. Short Communication
  10. Mononuclear cobalt(III) complexes with N-salicylidene-2-hydroxy-5-bromobenzylamine and N-salicylidene-2-hydroxy-5-chlorobenzylamine
  11. Original Paper
  12. Nickel(II) complex with 1,4,7-tris(2-aminoethyl)-1,4,7-triazacyclononane
  13. Original Paper
  14. SOD mimetic activity of salicylatocopper complexes
  15. Original Paper
  16. Copper oxalate complexes: synthesis and structural characterisation
  17. Review
  18. Towards the development of highly active copper catalysts for atom transfer radical addition (ATRA) and polymerization (ATRP)
  19. Original Paper
  20. Synthesis, DFT calculations and characterisation of new mixed Pt(II) complexes with 3-thiolanespiro-5′ 1-hydantoin and 4-thio-1H-tetrahydropyranspiro-5′-hydantoin
  21. Short Communication
  22. Formation of coordination compounds with aniline in the interlayer space of Ca2+-, Cu2+- and Fe3+-exchanged montmorillonite
  23. Original Paper
  24. Self-assembly hydrogen-bonded supramolecular arrays from copper(II) halogenobenzoates with nicotinamide:Structure and EPR spectra
  25. Original Paper
  26. Different structural types of copper(II) furan- and thiophencarboxylates: X-ray structural, EPR, spectral and magnetic analyses
  27. Preface
  28. XXV. International Conference on Coordination & Bioinorganic Chemistry (25th ICCBiC), June 2015, Slovakia
Downloaded on 28.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0194/pdf?lang=en
Scroll to top button