Startseite A rapid LC-MS/MS method for determination of urinary EtG and application to a cut-off limit study
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A rapid LC-MS/MS method for determination of urinary EtG and application to a cut-off limit study

  • Beril Anilanmert EMAIL logo , Ali Acar Özdemir , Muhammet Aydin , Meral Akgül und Salih Cengiz
Veröffentlicht/Copyright: 30. September 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Ethyl glucuronide (EtG) is a metabolite and a specific marker of alcohol consumption that can be detected days after the complete elimination of alcohol after drinking. A rapid, simple, and sensitive LC-ESI-MS/MS method for the determination of urinary ethyl glucuronide was developed and fully validated in accordance with analytical standards, using the C18 column. The whole process including sample preparation and LC-MS/MS lasted 10 min. A comprehensive validation including HorRat, measurement uncertainty, system suitability and intermediate precision calculations among analysts, and a cut-off limit study was performed. The method was applied to real samples and a cutoff limit determination study. The LOD and LOQ (using the IUPAC and Eurachem methods) were determined as 104.21 ng mL−1 and 165.00 ng mL−1. A cut-off limit of ≈ 818 ng mg−1 (normalised to creatinine) was found for urinary EtG. The results showed that the cut-off limits currently in use should be re-considered in further studies and standardised on a global scale. Normalisation to creatinine is important because of the risk of the dilution of urine intentionally or with a change of diet. The concentrations of real samples from subjects who had consumed alcohol were successfully predicted using this method, after zero HS-GC/MS results of urine alcohol concentration.

References

Albermann, M. E., Musshoff, F., & Madea, B. A. (2012). A highperformance liquid chromatographic-tandem mass spectrometric method for the determination of ethyl glucuronide and ethyl sulfate in urine validated according to forensic guidelines. Journal of Chromatographic Science, 50, 51-56. DOI: 10.1093/chromsci/bmr012.10.1093/chromsci/bmr012Suche in Google Scholar

AOAC International (2012). Guidelines for standard method performance requirements (AOAC Official methods of analysis, Appendix F, pp. 16). Rockville, MD, USA: AOAC International.Suche in Google Scholar

Retrieved June 2, 2015, from http://www.eoma.aoac.org/appf.pdf Suche in Google Scholar

Bergström, J., Helander, A., & Jones, A. W. (2003). Ethyl glucuronide concentrations in two successive urinary voids from drinking drivers: relationship to creatinine content and blood and urine ethanol concentrations. Forensic Science International, 133, 86-94. DOI: 10.1016/s0379-0738(03)00053-7.10.1016/S0379-0738(03)00053-7Suche in Google Scholar

Beyer, J., Vo, T. N., Gerostamoulos, D., & Drummer, O. H. (2011). Validated method for the determination of ethlyglucuronide and ethylsulfate in human urine. Analytical and Bioanalytical Chemistry, 400, 189-196. DOI: 10.1007/s00216-011-4667-2.10.1007/s00216-011-4667-2Suche in Google Scholar

Bicker, W., Lämmerhofer, M., Keller, T., Schuhmacher, R., Krska, R., & Lindner, W. (2006). Validated method for the determination of the ethanol consumption markers ethyl glucuronide, ethyl phosphate, and ethyl sulfate in human urine by reversed-phase/weak anion exchange liquid chromatography-tandem mass spectrometry. Analytical Chemistry, 78, 5884-5892. DOI: 10.1021/ac060680+.10.1021/ac060680+Suche in Google Scholar

Costantino, A., DiGregorio, E. J., Korn, W., Spayd, S., & Rieders, F. (2006). The effect of the use of mouthwash on ethylglucuronide concentrations in urine. Journal of Analytical Toxicology, 30, 659-662. DOI: 10.1093/jat/30.9.659.10.1093/jat/30.9.659Suche in Google Scholar

Cross, A. J., Major, J. M., & Sinha, R. (2011). Urinary biomarkers of meat consumption. Cancer Epidemiology, Biomarkers & Prevention, 20, 1107-1111. DOI: 10.1158/1055-9965.epi-11-0048.10.1158/1055-9965.EPI-11-0048Suche in Google Scholar

Eurachem (1998). The fitness for purpose of analytical methods: A laboratory guide to method validation and related topics (Eurachem guide). Leoben, Austria: Eurachem. Retrieved June 2, 2015, from http://eurachem.org/images/stories/ Guides/pdf/valid.pdf Suche in Google Scholar

Favretto, D., Nalesso, A., Frison, G., Viel, G., Traldi, P., & Ferrara, S. D. (2010). A novel and an effective analytical approach for the LC-MS determination of ethyl glucuronide and ethyl sulfate in urine. International Journal of Legal Medicine, 124, 161-164. DOI: 10.1007/s00414-009-0376-1.10.1007/s00414-009-0376-1Suche in Google Scholar

Ghante, M. R., Pannu, H. K., Loni, A., & Shivsharan, T. (2012). Development and validation of a RP- HPLC method for simultaneous estimation of metronidazole and norfloxacin in bulk and tablet dosage form. International Journal of Pharmacy and Pharmaceutical Sciences, 4(Suppl4), 241-245.Suche in Google Scholar

Hegstad, S., Helland, A., Hagemann, C., Michelsen, L., & Spigset, O. (2013). EtG/EtS in urine from sexual assault victims determined by UPLC-MS-MS. Journal of Analytical Toxicology, 37, 227-232. DOI: 10.1093/jat/bkt008.10.1093/jat/bkt008Suche in Google Scholar

Janda, I., & Alt, J. (2001). Improvement of ethyl glucuronide determination in human urine and serum samples by solidphase extraction. Journal of Chromatography B, 758, 229-234. DOI: 10.1016/s0378-4347(01)00186-4.10.1016/S0378-4347(01)00186-4Suche in Google Scholar

Jurado, C., Soriano, T., Giménez, M. P., & Menéndez, M. (2004). Diagnosis of chronic alcohol consumption: Hair analysis for ethyl-glucuronide. Forensic Science International, 145, 161-166. DOI: 10.1016/j.forsciint.2004.04.031.10.1016/j.forsciint.2004.04.031Suche in Google Scholar PubMed

Keten, A., Tumer, A. R., & Balseven-Odabasi, A. (2009). Measurement of ethyl glucuronide in vitreous humor with liquid chromatography-mass spectrometry. Forensic Science International, 193, 101-105. DOI: 10.1016/j.forsciint.2009.09.018.10.1016/j.forsciint.2009.09.018Suche in Google Scholar PubMed

Kummer, N., Wille, S., Di Fazio, V., Lambert, W., & Samyn, N. (2013). A fully validated method for the quantification of ethyl glucuronide and ethyl sulphate in urine by UPLC- ESI-MS/MS applied in a prospective alcohol self-monitoring study. Journal of Chromatography B, 929, 149-154. DOI: 10.1016/j.jchromb.2013.04.011.10.1016/j.jchromb.2013.04.011Suche in Google Scholar PubMed

Lykken, G. I., Jacob, R. A., Munoz, J. M., & Sandstead, H. H. (1980). A mathematical model of creatine metabolism in normal males-comparison between theory and experiment. The American Journal of Clinical Nutrition, 33, 2674-2685.10.1093/ajcn/33.12.2674Suche in Google Scholar PubMed

Mocak, J., Bond, A. M., Mitchell, S., & Scollary, G. (1997). A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques (Technical Report), Pure and Applied Chemistry, 69, 297-328. DOI: 10.1351/pac199769020297.10.1351/pac199769020297Suche in Google Scholar

Morini, L., Politi, L., Zucchella, A., & Polettini, A. (2007). Ethyl glucuronide and ethyl sulphate determination in serum by liquid chromatography-electrospray tandem mass spectrometry. Clinica Chimica Acta, 376, 213-219. DOI: 10.1016/j.cca.2006.08.024.10.1016/j.cca.2006.08.024Suche in Google Scholar PubMed

Musshoff, F., Albermann, E., & Madea, B. (2010). Ethyl glucuronide and ethyl sulfate in urine after consumption of various beverages and foods-misleading results? International Journal of Legal Medicine, 124, 623-630. DOI: 10.1007/s00414-010-0511-z.10.1007/s00414-010-0511-zSuche in Google Scholar PubMed

Politi, L., Morini, L., Groppi, A., Poloni, V., Pozzi, F., & Polettini, A. (2005). Direct determination of the ethanol metabolites ethyl glucuronide and ethyl sulfate in urine by liquid chromatography/electrospray tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 19, 1321-1331. DOI: 10.1002/rcm.1932.10.1002/rcm.1932Suche in Google Scholar PubMed

Robinson, T. M., Sewell, D. A., Casey, A., Steenge, G., & Greenhaff, P. L. (2000). Dietary creatine supplementation does not affect some haematological indices, or indices of muscle damage and hepatic and renal function. British Journal of Sports Medicine, 34, 284-288. DOI: 10.1136/bjsm.34.4.284.10.1136/bjsm.34.4.284Suche in Google Scholar PubMed PubMed Central

Schloegl, H., Rost, T., Schmidt,W.,Wurst, F. M., &Weinmann, W. (2006). Distribution of ethyl glucuronide in rib bone marrow, other tissues and body liquids as proof of alcohol consumption before death, Forensic Science International, 156, 213-218. DOI: 10.1016/j.forsciint.2005.03.024.10.1016/j.forsciint.2005.03.024Suche in Google Scholar PubMed

Skipper, G. E.,Weinmann, W., Thierauf, A., Schaefer, P.,Wiesbeck, G. Allen, J. P., Miller, M., & Wurst, F. M. (2004). Ethyl glucuronide: a biomarker to identify alcohol use by health professionals recovering from substance use disorders. Alcohol and Alcoholism, 39, 445-449. DOI: 10.1093/alcalc/ agh078.Suche in Google Scholar

Stephanson, N., Dahl, H., Helander, A., & Beck, O. (2002). Direct quantification of ethyl glucuronide in clinical urine samples by liquid chromatography-mass spectrometry. Therapeutic Drug Monitoring, 24, 645-651.10.1097/00007691-200210000-00011Suche in Google Scholar PubMed

Thierauf, A., Serr, A., Halter, C. C., Al-Ahmad, A., Rana, S., & Weinmann, W. (2008). Influence of preservatives on the stability of ethyl glucuronide and ethyl sulphate in urine. Forensic Science International, 182, 41-45. DOI: 10.1016/j.forsciint.2008.09.011.10.1016/j.forsciint.2008.09.011Suche in Google Scholar PubMed

Thierauf, A., Halter, C. C., Rana, S., Auwaerter, V., Wohlfarth, A., Wurst, F. M., & Weinmann, W. (2009). Urine tested positive for ethyl glucuronide after trace amounts of ethanol. Addiction, 104, 2007-2012. DOI: 10.1111/j.1360-0443.2009.02722.x.10.1111/j.1360-0443.2009.02722.xSuche in Google Scholar PubMed

Thierauf, A., Wohlfarth, A., Auwärter, V., Große Perdekamp, M., Wurst, F. M., & Weinmann, W. (2010). Urine tested positive for ethyl glucuronide and ethyl sulfate after the consumption of yeast and sugar. Forensic Science International, 202, e45-e47. DOI: 10.1016/j.forsciint.2010.06.028.10.1016/j.forsciint.2010.06.028Suche in Google Scholar PubMed

Weinmann, W., Schaefer, P., Thierauf, A., Schreiber, A., & Wurst, F. M. (2004). Confirmatory analysis of ethylglucuronide in urine by liquid-chromatography/electrospray ionization/ tandem mass spectrometry according to forensic guidelines. Journal of the American Society for Mass Spectrometry, 15, 188-193. DOI: 10.1016/j.jasms.2003.10.010.10.1016/j.jasms.2003.10.010Suche in Google Scholar PubMed

Wurst, F. M., Kempter, C., Metzger, J., Seidl, S., & Alt, A. (2000). Ethyl glucuronide: a marker of recent alcohol consumption with clinical and forensic implications. Alcohol, 20, 111-116. DOI: 10.1016/s0741-8329(99)00076-2. Wurst, F. M., Wiesbeck, G. A., Metzger, J. W., Weinmann, W., & Graf, M. (2004). On sensitivity, specificity, and the influence of various parameters on ethyl glucuronide levels in urine-results from the WHO/ISBRA study. Alcoholism: Clinical & Experimental Research, 28, 1220-1228. DOI: 10.1097/01.alc.0000134230.21414.11 10.1097/01.ALC.0000134230.21414.11Suche in Google Scholar

Received: 2015-3-20
Revised: 2015-6-4
Accepted: 2015-6-21
Published Online: 2015-9-30
Published in Print: 2015-12-1

Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Catalysis in glycerol: a survey of recent advances
  2. A rapid LC-MS/MS method for determination of urinary EtG and application to a cut-off limit study
  3. Validated chiral chromatographic methods for clopidogrel bisulphate and its related substances in bulk drug and pharmaceutical dosage forms
  4. Effect of SO2 on SCR activity of MnOx/PG catalysts at low temperature
  5. Preparation of Pd/Al2O3@silicalite-1 core–shell beads and their application to hydrogenation reactions
  6. Effect of rapid batch decompression on hydrolysate quality after hydrothermal pretreatment of wheat straw
  7. Anthocyanins profile, total phenolics and antioxidant activity of two Romanian red grape varieties: Feteascǎ neagrǎ and Bǎbeascǎ neagrǎ (Vitis vinifera)
  8. Polyphenols, radical scavenger activity, short-chain organic acids and heavy metals of several plants extracts from “Bucharest Delta”
  9. Reaction of anhydrous zinc chloride with 2,3-thiophenedicarbaldehyde bis(semicarbazone) (2,3BSTCH2) and bis(thiosemicarbazone) (2,3BTSTCH2): Crystal structure of {[C6H5N2S]+[ZnCl3(C6H4N2S)]−} complex
  10. Synthesis and evaluation of a novel hydrophobically associating polymer based on acrylamide for enhanced oil recovery
  11. Synthesis of cardanol-based photo-active SET-LRP initiator and its application to preparation of UV-cured resin
  12. Preparation, characterization and ion adsorption properties of functionalized polystyrene modified with 1,4-phenylene diisocyanate and diethylenetriamine
  13. Synthesis of lanthanide-based SBA-15 mesoporous hybrids by a novel route
  14. Comparative ESI FT-MS and MALDI-TOF structural analyses of representative human N-linked glycans
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0173/html
Button zum nach oben scrollen