Abstract
The ligand N2,N6-bis(2-hydroxyethyl)pyridine-2,6-dicarboxamide (L or BHPC) was synthesised by modification of 2,6-pyridinedicarboxylic acid then used to construct the lanthanide-based mesoporous material Tb-BHPC-SBA-15. In the structure of the resulting Tb-BHPC-SBA-15, lanthanide ions were chelated by the BHPC ligand and the Tb-BHPC complexes were anchored into the SBA-15 host formed by the reaction between the hydroxyl group and the active Si-OH. The mesoporous material Tb-BHPC-SBA-15 was characterised by UV, small-angle X-ray diffraction (SAXRD) patterns, nitrogen adsorption/desorption isotherms and fluorescence spectra. The results indicate that the ligand and lanthanide ions were introduced into the SBA-15 host and the mesoporous material Tb-BHPC-SBA-15 exhibited the characteristic luminescence of Tb3+.
References
Akitsu, T., & Einaga, Y. (2007). Structure of cyano-bridged Eu(III)-Co(III) bimetallic assembly and its application to photophysical verification of photomagnetic phenomenon. Chemical Papers, 61, 194-198. DOI: 10.2478/s11696-007-0019-2.10.2478/s11696-007-0019-2Search in Google Scholar
Armelao, L., Bottaro G., Quici, S., Cavazzini, M., Raffo, M. C., Barigelletti, F., & Accorsi, G. (2007). Photophysical properties and tunable colour changes of silica single layers doped with lanthanide(III) complexes. Chemical Communications, 28, 2911-2913. DOI: 10.1039/b702238g.10.1039/b702238gSearch in Google Scholar PubMed
Armelao, L., Quici, S., Barigelletti, F., Accorsi, G., Bottaro, G., Cavazzini, M., & Tondello, E. (2010). Design of luminescent lanthanide complexes: From molecules to highly efficient photo-emitting materials. Coordination Chemistry Reviews, 254, 487-505. DOI: 10.1016/j.ccr.2009.07.025.10.1016/j.ccr.2009.07.025Search in Google Scholar
Armelao, L., Bottaro, G., Quici, S., Cavazzini, M., Scalera, C., & Accorsi, G. (2011). Synthesis and photophysical characterization of highly luminescent silica films doped with substituted 2-hydroxyphthalamide (IAM) terbium complexes. Dalton Transactions, 2011, 11530-11538. DOI: 10.1039/c1dt11 131k.Search in Google Scholar
Binnemans, K. (2009). Lanthanide-based luminescent hybrid materials. Chemical Reviews, 109, 4283-4374. DOI: 10.1021/ cr8003983.10.1021/cr8003983Search in Google Scholar PubMed
Bulatovic, M. Z., Maksimović-Ivanić, D., Bensing, C., Gómez- Ruiz, S., Steinborn, D., Schmidt, H., Mojić, M., Korać, A., Golić, I., Pérez-Quintanilla, D., Momčilović, M., Mijatović, S., & Kaluđerović, G. N. (2014). Organotin(IV)-loaded mesoporous silica as a biocompatible strategy in cancer treatment. Angewandte Chemie International Edition, 53, 5982-5987. DOI: 10.1002/anie.201400763.10.1002/anie.201400763Search in Google Scholar PubMed
Bünzli, J. C. G., & Piguet, C. (2005). Taking advantage of luminescent lanthanide ions. Chemical Society Reviews, 2005, 1048-1077. DOI: 10.1039/b406082m.10.1039/b406082mSearch in Google Scholar PubMed
Bünzli, J. C. G. (2006). Benefiting from the unique properties of lanthanide ions. Accounts of Chemical Research, 39, 53-61. DOI: 10.1021/ar0400894.10.1021/ar0400894Search in Google Scholar PubMed
Bünzli, J. C. G. (2010). Lanthanide luminescence for biomedical analyses and imaging. Chemical Reviews, 110, 2729-2755. DOI: 10.1021/cr900362e.10.1021/cr900362eSearch in Google Scholar PubMed
Carlos, L. D., Ferreira, R. A. S., de Zea Bermudez, V., & Ribeiro, S. J. L. (2009). Lanthanide-containing light-emitting organic-inorganic hybrids: a bet on the future. Advanced Materials, 21, 509-534. DOI: 10.1002/adma.200801635.10.1002/adma.200801635Search in Google Scholar PubMed
Ceballos-Torres, J., Virag, P., Cenariu, M., Prashar, S., Fajardo, M., Fischer-Fodor, E., & Gomez-Ruiz, S. (2014). Anti-cancer applications of titanocene-functionalised nanostructured systems: An insight into cell death mechanisms. Chemistry - A European Journal, 20, 10811-10828. DOI: 10.1002/chem.201400300.10.1002/chem.201400300Search in Google Scholar PubMed
DeOliveira, E., Neri, C. R., Serra, O. A., & Prado, A. G. S. (2007). Antenna effect in highly luminescent Eu3+ anchored in hexagonal mesoporous silica. Chemistry of Materials, 19, 5437-5442. DOI: 10.1021/cm701997y.10.1021/cm701997ySearch in Google Scholar
Eliseeva, S. V., & Bünzli, J. C. G. (2010). Lanthanide luminescence for functional materials and bio-sciences. Chemical Society Reviews, 2010, 189-227. DOI: 10.1039/b905604c.10.1039/B905604CSearch in Google Scholar PubMed
Enthaler, S., Spilker, B., Erre, G., Junge, K., Tse, M. K., & Beller, M. (2008). Biomimetic transfer hydrogenation of 2- alkoxy-and 2-aryloxyketones with iron-porphyrin catalysts. Tetrahedron, 64, 3867-3876. DOI: 10.1016/j.tet.2008.01.083.10.1016/j.tet.2008.01.083Search in Google Scholar
Feng, J., & Zhang, H. J. (2013). Hybrid materials based on lanthanide organic complexes: a review. Chemical Society Reviews, 2013, 387-410. DOI: 10.1039/c2cs35069f.10.1039/C2CS35069FSearch in Google Scholar
García-Peñas, A., Gomez-Ruiz, S., Pérez-Quintanilla, D., Paschke, R., Sierra, I., Prashar, S., del Hierro, I., & Kaluđerović, G. N. (2012). Study of the cytotoxicity and particle action in human cancer cells of titanocene-functionalized materials with potential application against tumors. Journal of Inorganic Biochemistry, 106, 100-110. DOI: 10.1016/ j.jinorgbio.2011.09.033.10.1016/j.jinorgbio.2011.09.033Search in Google Scholar PubMed
Goodwin, G. B., & Kenney, M. E. (1990). A new route to alkoxysilanes and alkoxysiloxanes of use for the preparation of ceramics by the sol-gel technique. Inorganic Chemistry, 29, 1216-1220. DOI: 10.1021/ic00331a021.10.1021/ic00331a021Search in Google Scholar
Gudasi, K., Vadavi, R., Shenoy, R., Patil, M., Patil, S. A., & Nethaji, M. (2005). Transition metal complexes of a tridentate ligand bearing two pendant pyridine bases: The X-ray crystal structure of pentacoordinate copper(II) complex. Inorganica Chimica Acta, 358, 3799-3806. DOI: 10.1016/j.ica.2005.07.033.10.1016/j.ica.2005.07.033Search in Google Scholar
Haas, K. L., & Franz, K. J. (2009). Application of metal coordination chemistry to explore and manipulate cell biology. Chemical Reviews, 109, 4921-4960. DOI: 10.1021/cr900134a.10.1021/cr900134aSearch in Google Scholar PubMed PubMed Central
Horňáček, M., Hudec, P., & Smiešková, A. (2009). Synthesis and characterization of mesoporous molecular sieves. Chemical Papers, 63, 689-697. DOI: 10.2478/s11696-009-0066-y.10.2478/s11696-009-0066-ySearch in Google Scholar
Hu, Q. Y., Hampsey, J. E., Jiang, N., Li, C. J., & Lu, Y. F. (2005). Surfactant-templated organic functionalized mesoporous silica with phosphino ligands. Chemistry of Materials, 17, 1561-1569. DOI: 10.1021/cm0491983.10.1021/cm0491983Search in Google Scholar
Kaluđerović, G. N., Pérez-Quintanilla, D., Sierra, I., Prashar, S., del Hierro, I., Žižak, Z., Juranić, Z. D., Fajardo, M., & Gómez-Ruiz, S. (2010). Study of the influence of the metal complex on the cytotoxic activity of titanocenefunctionalized mesoporous materials. Journal of Materials Chemistry, 20, 806-814. DOI: 10.1039/b919269g.10.1039/B919269GSearch in Google Scholar
Kido, J., & Okamoto, Y. (2002). Organo lanthanide metal complexes for electroluminescent materials. Chemical Reviews, 102, 2357-2368. DOI: 10.1021/cr010448y.10.1021/cr010448ySearch in Google Scholar
Li, Y. J., Yan, B., & Li, Y. (2010). Luminescent lanthanide (Eu3+, Tb3+) ternary mesoporous hybrids with functionalized β-diketones (TTA, DBM) covalently linking SBA-15 and 2,2’-bipyridine (bpy). Microporous and Mesoporous Materials, 131, 82-88. DOI: 10.1016/j.micromeso.2009.12.006.10.1016/j.micromeso.2009.12.006Search in Google Scholar
Li, Y. J., Yan, B., & Wang, L. (2011). Calix[4]arene derivative functionalized lanthanide (Eu, Tb) SBA-15 mesoporous hybrids with covalent bonds: assembly, characterization and photoluminescence. Dalton Transactions, 2011, 6722-6731. DOI: 10.1039/c1dt10190k.10.1039/c1dt10190kSearch in Google Scholar
Pascanu, V., Hansen, P. R., Gómez, A. B., Ayats, C., Platero- Prats, A., Johansson, M. J., Pericàs, M. À., & Martin- Matute, B. (2015). Highly functionalized biaryls via Suzuki- Miyaura cross-coupling catalyzed by Pd@MOF under batch and continuous flow regimes. ChemSusChem, 8, 123-130. DOI: 10.1002/cssc.201402858.10.1002/cssc.201402858Search in Google Scholar
Peng, C. Y., Zhang, H. J., Yu, J. B., Meng, Q. G., Fu, L. S., Li, H. R., Sun, L. N., & Guo, X. M. J. (2005a). Synthesis, characterization, and luminescence properties of the ternary europium complex covalently bonded to mesoporous SBA-15. The Journal of Physical Chemistry B, 109, 15278-15287. DOI: 10.1021/jp051984n.10.1021/jp051984nSearch in Google Scholar
Peng, C. Y., Zhang, H. J., Meng, Q. G., Li, H. R., Yu, J.,B., Guo, F. J., & Sun, L. N. (2005b). Synthesis and luminescence properties of SBA-15 functionalized with covalently bonded ternary europium complex. Inorganic Chemistry Communications, 8, 440-443. DOI: 10.1016/j.inoche.2005.01.026.10.1016/j.inoche.2005.01.026Search in Google Scholar
Pérez-Quintanilla, D., Gómez-Ruiz, S., Žižak, Z., Sierra, I., Prashar, S., del Hierro, I., Fajardo, M., Jurani´c, Z. D., & Kaluđerović, G. N., (2009). A new generation of anticancer drugs: Mesoporous materials modified with titanocene complexes. Chemistry - A European Journal, 15, 5588-5597. DOI: 10.1002/chem.200900151.10.1002/chem.200900151Search in Google Scholar
Quici, S., Cavazzini, M., Raffo, M. C., Armelao, L., Bottaro, G., Accorsi, G., Sabatini, C., & Barigelletti, F. (2006). Highly homogeneous, transparent and luminescent SiO2 glassy layers containing a covalently bound tetraazacyclododecanetriacetic acid-Eu(III)-acetophenone complex. Journal of Materials Chemistry, 16, 741-747. DOI: 10.1039/b514409d.10.1039/B514409DSearch in Google Scholar
Sabbatini, N., Guardigli, M., & Lehn, J. M. (1993). Luminescent lanthanide complexes as photochemical supramolecular devices. Coordination Chemistry Reviews, 123, 201-228. DOI: 10.1016/0010-8545(93)85056-a.10.1016/0010-8545(93)85056-ASearch in Google Scholar
Sanchez, C., & Ribot, F. (1994). Design of hybrid organicinorganic materials synthesized via sol-gel chemistry. New Journal of Chemistry, 18, 1007-1047.Search in Google Scholar
Shimojima, A., Liu, Z., Ohsuna, T., Terasaki, O., & Kuroda, K. (2005). Self-assembly of designed oligomeric siloxanes with alkyl chains into silica-based hybrid mesostructures. Journal of the American Oil Chemists Society, 127, 14108-14116. DOI: 10.1021/ja0541736.10.1021/ja0541736Search in Google Scholar PubMed
Singh, L., & Singh, R. (2014). Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea. Chemical Papers, 68, 223-232. DOI: 10.2478/s11696-013-0446-1.10.2478/s11696-013-0446-1Search in Google Scholar
Sun, L. N., Zhang, Y., Yu, J. B., Yu, S. Y., Dang, S., Peng, C. Y., & Zhang, H. J. (2008). Design and synthesis of near-IR luminescent mesoporous materials covalently linked with tris(8-hydroxyquinolinate) lanthanide(III) complexes. Microporous and Mesoporous Materials, 115, 535-540. DOI: 10.1016/j.micromeso.2008.02.031.10.1016/j.micromeso.2008.02.031Search in Google Scholar
Tang, R. R., Gu, G. L., & Zhao, Q. (2008). Synthesis of Eu(III) and Tb(III) complexes with novel pyridine dicarboxamide derivatives and their luminescence properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71, 371-376. DOI: 10.1016/j.saa.2007.12.047.10.1016/j.saa.2007.12.047Search in Google Scholar PubMed
Tiseanu, C., Kumke, M. U., Parvulescu, V. I., Koti, A. S. R., Gagea, B. C., & Martens, J. A. (2007). Timeresolved photoluminescence of terbium-doped microporous- mesoporous Zeotile-1 materials. Journal of Photochemistry and Photobiology A: Chemistry, 187, 299-304. DOI: 10.1016/j.jphotochem.2006.10.026.10.1016/j.jphotochem.2006.10.026Search in Google Scholar
Tiseanu, C., & Lorenz-Fonfria, V. A. (2010). Time-resolved photoluminescence spectra, lifetime distributions and decayassociated spectra of lanthanide’s exchanged microporousmesoporous materials. Journal of Nanoscience and Nanotechnology, 10, 2803-2810. DOI: 10.1166/jnn.2010.1426.10.1166/jnn.2010.1426Search in Google Scholar PubMed
Yan, B., Zhou, L., & Li, Y. (2009). Hydrothermal synthesis, physical characterization and photoluminescence of homologous-SBA-15 fabricated with Eu3+. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 350, 147-153. DOI: 10.1016/j.colsurfa.2009.09.026.10.1016/j.colsurfa.2009.09.026Search in Google Scholar
Yan, B. (2012). Recent progress in photofunctional lanthanide hybrid materials. RSC Advances, 2012, 9304-9324. DOI: 10.1039/c2ra20976d. 10.1039/c2ra20976dSearch in Google Scholar
Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Catalysis in glycerol: a survey of recent advances
- A rapid LC-MS/MS method for determination of urinary EtG and application to a cut-off limit study
- Validated chiral chromatographic methods for clopidogrel bisulphate and its related substances in bulk drug and pharmaceutical dosage forms
- Effect of SO2 on SCR activity of MnOx/PG catalysts at low temperature
- Preparation of Pd/Al2O3@silicalite-1 core–shell beads and their application to hydrogenation reactions
- Effect of rapid batch decompression on hydrolysate quality after hydrothermal pretreatment of wheat straw
- Anthocyanins profile, total phenolics and antioxidant activity of two Romanian red grape varieties: Feteascǎ neagrǎ and Bǎbeascǎ neagrǎ (Vitis vinifera)
- Polyphenols, radical scavenger activity, short-chain organic acids and heavy metals of several plants extracts from “Bucharest Delta”
- Reaction of anhydrous zinc chloride with 2,3-thiophenedicarbaldehyde bis(semicarbazone) (2,3BSTCH2) and bis(thiosemicarbazone) (2,3BTSTCH2): Crystal structure of {[C6H5N2S]+[ZnCl3(C6H4N2S)]−} complex
- Synthesis and evaluation of a novel hydrophobically associating polymer based on acrylamide for enhanced oil recovery
- Synthesis of cardanol-based photo-active SET-LRP initiator and its application to preparation of UV-cured resin
- Preparation, characterization and ion adsorption properties of functionalized polystyrene modified with 1,4-phenylene diisocyanate and diethylenetriamine
- Synthesis of lanthanide-based SBA-15 mesoporous hybrids by a novel route
- Comparative ESI FT-MS and MALDI-TOF structural analyses of representative human N-linked glycans
Articles in the same Issue
- Catalysis in glycerol: a survey of recent advances
- A rapid LC-MS/MS method for determination of urinary EtG and application to a cut-off limit study
- Validated chiral chromatographic methods for clopidogrel bisulphate and its related substances in bulk drug and pharmaceutical dosage forms
- Effect of SO2 on SCR activity of MnOx/PG catalysts at low temperature
- Preparation of Pd/Al2O3@silicalite-1 core–shell beads and their application to hydrogenation reactions
- Effect of rapid batch decompression on hydrolysate quality after hydrothermal pretreatment of wheat straw
- Anthocyanins profile, total phenolics and antioxidant activity of two Romanian red grape varieties: Feteascǎ neagrǎ and Bǎbeascǎ neagrǎ (Vitis vinifera)
- Polyphenols, radical scavenger activity, short-chain organic acids and heavy metals of several plants extracts from “Bucharest Delta”
- Reaction of anhydrous zinc chloride with 2,3-thiophenedicarbaldehyde bis(semicarbazone) (2,3BSTCH2) and bis(thiosemicarbazone) (2,3BTSTCH2): Crystal structure of {[C6H5N2S]+[ZnCl3(C6H4N2S)]−} complex
- Synthesis and evaluation of a novel hydrophobically associating polymer based on acrylamide for enhanced oil recovery
- Synthesis of cardanol-based photo-active SET-LRP initiator and its application to preparation of UV-cured resin
- Preparation, characterization and ion adsorption properties of functionalized polystyrene modified with 1,4-phenylene diisocyanate and diethylenetriamine
- Synthesis of lanthanide-based SBA-15 mesoporous hybrids by a novel route
- Comparative ESI FT-MS and MALDI-TOF structural analyses of representative human N-linked glycans