Home Synthesis of lanthanide-based SBA-15 mesoporous hybrids by a novel route
Article
Licensed
Unlicensed Requires Authentication

Synthesis of lanthanide-based SBA-15 mesoporous hybrids by a novel route

  • Zheng Li , Jing-Jian Zhou , Si-Yu Zuo , Xiao Yuan , Chen-Chen Ma , Yi-Shan Song EMAIL logo and Hua Zhang
Published/Copyright: September 30, 2015
Become an author with De Gruyter Brill

Abstract

The ligand N2,N6-bis(2-hydroxyethyl)pyridine-2,6-dicarboxamide (L or BHPC) was synthesised by modification of 2,6-pyridinedicarboxylic acid then used to construct the lanthanide-based mesoporous material Tb-BHPC-SBA-15. In the structure of the resulting Tb-BHPC-SBA-15, lanthanide ions were chelated by the BHPC ligand and the Tb-BHPC complexes were anchored into the SBA-15 host formed by the reaction between the hydroxyl group and the active Si-OH. The mesoporous material Tb-BHPC-SBA-15 was characterised by UV, small-angle X-ray diffraction (SAXRD) patterns, nitrogen adsorption/desorption isotherms and fluorescence spectra. The results indicate that the ligand and lanthanide ions were introduced into the SBA-15 host and the mesoporous material Tb-BHPC-SBA-15 exhibited the characteristic luminescence of Tb3+.

References

Akitsu, T., & Einaga, Y. (2007). Structure of cyano-bridged Eu(III)-Co(III) bimetallic assembly and its application to photophysical verification of photomagnetic phenomenon. Chemical Papers, 61, 194-198. DOI: 10.2478/s11696-007-0019-2.10.2478/s11696-007-0019-2Search in Google Scholar

Armelao, L., Bottaro G., Quici, S., Cavazzini, M., Raffo, M. C., Barigelletti, F., & Accorsi, G. (2007). Photophysical properties and tunable colour changes of silica single layers doped with lanthanide(III) complexes. Chemical Communications, 28, 2911-2913. DOI: 10.1039/b702238g.10.1039/b702238gSearch in Google Scholar PubMed

Armelao, L., Quici, S., Barigelletti, F., Accorsi, G., Bottaro, G., Cavazzini, M., & Tondello, E. (2010). Design of luminescent lanthanide complexes: From molecules to highly efficient photo-emitting materials. Coordination Chemistry Reviews, 254, 487-505. DOI: 10.1016/j.ccr.2009.07.025.10.1016/j.ccr.2009.07.025Search in Google Scholar

Armelao, L., Bottaro, G., Quici, S., Cavazzini, M., Scalera, C., & Accorsi, G. (2011). Synthesis and photophysical characterization of highly luminescent silica films doped with substituted 2-hydroxyphthalamide (IAM) terbium complexes. Dalton Transactions, 2011, 11530-11538. DOI: 10.1039/c1dt11 131k.Search in Google Scholar

Binnemans, K. (2009). Lanthanide-based luminescent hybrid materials. Chemical Reviews, 109, 4283-4374. DOI: 10.1021/ cr8003983.10.1021/cr8003983Search in Google Scholar PubMed

Bulatovic, M. Z., Maksimović-Ivanić, D., Bensing, C., Gómez- Ruiz, S., Steinborn, D., Schmidt, H., Mojić, M., Korać, A., Golić, I., Pérez-Quintanilla, D., Momčilović, M., Mijatović, S., & Kaluđerović, G. N. (2014). Organotin(IV)-loaded mesoporous silica as a biocompatible strategy in cancer treatment. Angewandte Chemie International Edition, 53, 5982-5987. DOI: 10.1002/anie.201400763.10.1002/anie.201400763Search in Google Scholar PubMed

Bünzli, J. C. G., & Piguet, C. (2005). Taking advantage of luminescent lanthanide ions. Chemical Society Reviews, 2005, 1048-1077. DOI: 10.1039/b406082m.10.1039/b406082mSearch in Google Scholar PubMed

Bünzli, J. C. G. (2006). Benefiting from the unique properties of lanthanide ions. Accounts of Chemical Research, 39, 53-61. DOI: 10.1021/ar0400894.10.1021/ar0400894Search in Google Scholar PubMed

Bünzli, J. C. G. (2010). Lanthanide luminescence for biomedical analyses and imaging. Chemical Reviews, 110, 2729-2755. DOI: 10.1021/cr900362e.10.1021/cr900362eSearch in Google Scholar PubMed

Carlos, L. D., Ferreira, R. A. S., de Zea Bermudez, V., & Ribeiro, S. J. L. (2009). Lanthanide-containing light-emitting organic-inorganic hybrids: a bet on the future. Advanced Materials, 21, 509-534. DOI: 10.1002/adma.200801635.10.1002/adma.200801635Search in Google Scholar PubMed

Ceballos-Torres, J., Virag, P., Cenariu, M., Prashar, S., Fajardo, M., Fischer-Fodor, E., & Gomez-Ruiz, S. (2014). Anti-cancer applications of titanocene-functionalised nanostructured systems: An insight into cell death mechanisms. Chemistry - A European Journal, 20, 10811-10828. DOI: 10.1002/chem.201400300.10.1002/chem.201400300Search in Google Scholar PubMed

DeOliveira, E., Neri, C. R., Serra, O. A., & Prado, A. G. S. (2007). Antenna effect in highly luminescent Eu3+ anchored in hexagonal mesoporous silica. Chemistry of Materials, 19, 5437-5442. DOI: 10.1021/cm701997y.10.1021/cm701997ySearch in Google Scholar

Eliseeva, S. V., & Bünzli, J. C. G. (2010). Lanthanide luminescence for functional materials and bio-sciences. Chemical Society Reviews, 2010, 189-227. DOI: 10.1039/b905604c.10.1039/B905604CSearch in Google Scholar PubMed

Enthaler, S., Spilker, B., Erre, G., Junge, K., Tse, M. K., & Beller, M. (2008). Biomimetic transfer hydrogenation of 2- alkoxy-and 2-aryloxyketones with iron-porphyrin catalysts. Tetrahedron, 64, 3867-3876. DOI: 10.1016/j.tet.2008.01.083.10.1016/j.tet.2008.01.083Search in Google Scholar

Feng, J., & Zhang, H. J. (2013). Hybrid materials based on lanthanide organic complexes: a review. Chemical Society Reviews, 2013, 387-410. DOI: 10.1039/c2cs35069f.10.1039/C2CS35069FSearch in Google Scholar

García-Peñas, A., Gomez-Ruiz, S., Pérez-Quintanilla, D., Paschke, R., Sierra, I., Prashar, S., del Hierro, I., & Kaluđerović, G. N. (2012). Study of the cytotoxicity and particle action in human cancer cells of titanocene-functionalized materials with potential application against tumors. Journal of Inorganic Biochemistry, 106, 100-110. DOI: 10.1016/ j.jinorgbio.2011.09.033.10.1016/j.jinorgbio.2011.09.033Search in Google Scholar PubMed

Goodwin, G. B., & Kenney, M. E. (1990). A new route to alkoxysilanes and alkoxysiloxanes of use for the preparation of ceramics by the sol-gel technique. Inorganic Chemistry, 29, 1216-1220. DOI: 10.1021/ic00331a021.10.1021/ic00331a021Search in Google Scholar

Gudasi, K., Vadavi, R., Shenoy, R., Patil, M., Patil, S. A., & Nethaji, M. (2005). Transition metal complexes of a tridentate ligand bearing two pendant pyridine bases: The X-ray crystal structure of pentacoordinate copper(II) complex. Inorganica Chimica Acta, 358, 3799-3806. DOI: 10.1016/j.ica.2005.07.033.10.1016/j.ica.2005.07.033Search in Google Scholar

Haas, K. L., & Franz, K. J. (2009). Application of metal coordination chemistry to explore and manipulate cell biology. Chemical Reviews, 109, 4921-4960. DOI: 10.1021/cr900134a.10.1021/cr900134aSearch in Google Scholar PubMed PubMed Central

Horňáček, M., Hudec, P., & Smiešková, A. (2009). Synthesis and characterization of mesoporous molecular sieves. Chemical Papers, 63, 689-697. DOI: 10.2478/s11696-009-0066-y.10.2478/s11696-009-0066-ySearch in Google Scholar

Hu, Q. Y., Hampsey, J. E., Jiang, N., Li, C. J., & Lu, Y. F. (2005). Surfactant-templated organic functionalized mesoporous silica with phosphino ligands. Chemistry of Materials, 17, 1561-1569. DOI: 10.1021/cm0491983.10.1021/cm0491983Search in Google Scholar

Kaluđerović, G. N., Pérez-Quintanilla, D., Sierra, I., Prashar, S., del Hierro, I., Žižak, Z., Juranić, Z. D., Fajardo, M., & Gómez-Ruiz, S. (2010). Study of the influence of the metal complex on the cytotoxic activity of titanocenefunctionalized mesoporous materials. Journal of Materials Chemistry, 20, 806-814. DOI: 10.1039/b919269g.10.1039/B919269GSearch in Google Scholar

Kido, J., & Okamoto, Y. (2002). Organo lanthanide metal complexes for electroluminescent materials. Chemical Reviews, 102, 2357-2368. DOI: 10.1021/cr010448y.10.1021/cr010448ySearch in Google Scholar

Li, Y. J., Yan, B., & Li, Y. (2010). Luminescent lanthanide (Eu3+, Tb3+) ternary mesoporous hybrids with functionalized β-diketones (TTA, DBM) covalently linking SBA-15 and 2,2’-bipyridine (bpy). Microporous and Mesoporous Materials, 131, 82-88. DOI: 10.1016/j.micromeso.2009.12.006.10.1016/j.micromeso.2009.12.006Search in Google Scholar

Li, Y. J., Yan, B., & Wang, L. (2011). Calix[4]arene derivative functionalized lanthanide (Eu, Tb) SBA-15 mesoporous hybrids with covalent bonds: assembly, characterization and photoluminescence. Dalton Transactions, 2011, 6722-6731. DOI: 10.1039/c1dt10190k.10.1039/c1dt10190kSearch in Google Scholar

Pascanu, V., Hansen, P. R., Gómez, A. B., Ayats, C., Platero- Prats, A., Johansson, M. J., Pericàs, M. À., & Martin- Matute, B. (2015). Highly functionalized biaryls via Suzuki- Miyaura cross-coupling catalyzed by Pd@MOF under batch and continuous flow regimes. ChemSusChem, 8, 123-130. DOI: 10.1002/cssc.201402858.10.1002/cssc.201402858Search in Google Scholar

Peng, C. Y., Zhang, H. J., Yu, J. B., Meng, Q. G., Fu, L. S., Li, H. R., Sun, L. N., & Guo, X. M. J. (2005a). Synthesis, characterization, and luminescence properties of the ternary europium complex covalently bonded to mesoporous SBA-15. The Journal of Physical Chemistry B, 109, 15278-15287. DOI: 10.1021/jp051984n.10.1021/jp051984nSearch in Google Scholar

Peng, C. Y., Zhang, H. J., Meng, Q. G., Li, H. R., Yu, J.,B., Guo, F. J., & Sun, L. N. (2005b). Synthesis and luminescence properties of SBA-15 functionalized with covalently bonded ternary europium complex. Inorganic Chemistry Communications, 8, 440-443. DOI: 10.1016/j.inoche.2005.01.026.10.1016/j.inoche.2005.01.026Search in Google Scholar

Pérez-Quintanilla, D., Gómez-Ruiz, S., Žižak, Z., Sierra, I., Prashar, S., del Hierro, I., Fajardo, M., Jurani´c, Z. D., & Kaluđerović, G. N., (2009). A new generation of anticancer drugs: Mesoporous materials modified with titanocene complexes. Chemistry - A European Journal, 15, 5588-5597. DOI: 10.1002/chem.200900151.10.1002/chem.200900151Search in Google Scholar

Quici, S., Cavazzini, M., Raffo, M. C., Armelao, L., Bottaro, G., Accorsi, G., Sabatini, C., & Barigelletti, F. (2006). Highly homogeneous, transparent and luminescent SiO2 glassy layers containing a covalently bound tetraazacyclododecanetriacetic acid-Eu(III)-acetophenone complex. Journal of Materials Chemistry, 16, 741-747. DOI: 10.1039/b514409d.10.1039/B514409DSearch in Google Scholar

Sabbatini, N., Guardigli, M., & Lehn, J. M. (1993). Luminescent lanthanide complexes as photochemical supramolecular devices. Coordination Chemistry Reviews, 123, 201-228. DOI: 10.1016/0010-8545(93)85056-a.10.1016/0010-8545(93)85056-ASearch in Google Scholar

Sanchez, C., & Ribot, F. (1994). Design of hybrid organicinorganic materials synthesized via sol-gel chemistry. New Journal of Chemistry, 18, 1007-1047.Search in Google Scholar

Shimojima, A., Liu, Z., Ohsuna, T., Terasaki, O., & Kuroda, K. (2005). Self-assembly of designed oligomeric siloxanes with alkyl chains into silica-based hybrid mesostructures. Journal of the American Oil Chemists Society, 127, 14108-14116. DOI: 10.1021/ja0541736.10.1021/ja0541736Search in Google Scholar PubMed

Singh, L., & Singh, R. (2014). Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea. Chemical Papers, 68, 223-232. DOI: 10.2478/s11696-013-0446-1.10.2478/s11696-013-0446-1Search in Google Scholar

Sun, L. N., Zhang, Y., Yu, J. B., Yu, S. Y., Dang, S., Peng, C. Y., & Zhang, H. J. (2008). Design and synthesis of near-IR luminescent mesoporous materials covalently linked with tris(8-hydroxyquinolinate) lanthanide(III) complexes. Microporous and Mesoporous Materials, 115, 535-540. DOI: 10.1016/j.micromeso.2008.02.031.10.1016/j.micromeso.2008.02.031Search in Google Scholar

Tang, R. R., Gu, G. L., & Zhao, Q. (2008). Synthesis of Eu(III) and Tb(III) complexes with novel pyridine dicarboxamide derivatives and their luminescence properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71, 371-376. DOI: 10.1016/j.saa.2007.12.047.10.1016/j.saa.2007.12.047Search in Google Scholar PubMed

Tiseanu, C., Kumke, M. U., Parvulescu, V. I., Koti, A. S. R., Gagea, B. C., & Martens, J. A. (2007). Timeresolved photoluminescence of terbium-doped microporous- mesoporous Zeotile-1 materials. Journal of Photochemistry and Photobiology A: Chemistry, 187, 299-304. DOI: 10.1016/j.jphotochem.2006.10.026.10.1016/j.jphotochem.2006.10.026Search in Google Scholar

Tiseanu, C., & Lorenz-Fonfria, V. A. (2010). Time-resolved photoluminescence spectra, lifetime distributions and decayassociated spectra of lanthanide’s exchanged microporousmesoporous materials. Journal of Nanoscience and Nanotechnology, 10, 2803-2810. DOI: 10.1166/jnn.2010.1426.10.1166/jnn.2010.1426Search in Google Scholar PubMed

Yan, B., Zhou, L., & Li, Y. (2009). Hydrothermal synthesis, physical characterization and photoluminescence of homologous-SBA-15 fabricated with Eu3+. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 350, 147-153. DOI: 10.1016/j.colsurfa.2009.09.026.10.1016/j.colsurfa.2009.09.026Search in Google Scholar

Yan, B. (2012). Recent progress in photofunctional lanthanide hybrid materials. RSC Advances, 2012, 9304-9324. DOI: 10.1039/c2ra20976d. 10.1039/c2ra20976dSearch in Google Scholar

Received: 2014-11-30
Revised: 2015-6-6
Accepted: 2015-6-21
Published Online: 2015-9-30
Published in Print: 2015-12-1

Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Catalysis in glycerol: a survey of recent advances
  2. A rapid LC-MS/MS method for determination of urinary EtG and application to a cut-off limit study
  3. Validated chiral chromatographic methods for clopidogrel bisulphate and its related substances in bulk drug and pharmaceutical dosage forms
  4. Effect of SO2 on SCR activity of MnOx/PG catalysts at low temperature
  5. Preparation of Pd/Al2O3@silicalite-1 core–shell beads and their application to hydrogenation reactions
  6. Effect of rapid batch decompression on hydrolysate quality after hydrothermal pretreatment of wheat straw
  7. Anthocyanins profile, total phenolics and antioxidant activity of two Romanian red grape varieties: Feteascǎ neagrǎ and Bǎbeascǎ neagrǎ (Vitis vinifera)
  8. Polyphenols, radical scavenger activity, short-chain organic acids and heavy metals of several plants extracts from “Bucharest Delta”
  9. Reaction of anhydrous zinc chloride with 2,3-thiophenedicarbaldehyde bis(semicarbazone) (2,3BSTCH2) and bis(thiosemicarbazone) (2,3BTSTCH2): Crystal structure of {[C6H5N2S]+[ZnCl3(C6H4N2S)]−} complex
  10. Synthesis and evaluation of a novel hydrophobically associating polymer based on acrylamide for enhanced oil recovery
  11. Synthesis of cardanol-based photo-active SET-LRP initiator and its application to preparation of UV-cured resin
  12. Preparation, characterization and ion adsorption properties of functionalized polystyrene modified with 1,4-phenylene diisocyanate and diethylenetriamine
  13. Synthesis of lanthanide-based SBA-15 mesoporous hybrids by a novel route
  14. Comparative ESI FT-MS and MALDI-TOF structural analyses of representative human N-linked glycans
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0172/html
Scroll to top button