Home Catalysis in glycerol: a survey of recent advances
Article
Licensed
Unlicensed Requires Authentication

Catalysis in glycerol: a survey of recent advances

  • Silvia Tagliapietra , Laura Orio , Giovanni Palmisano , Andrea Penoni and Giancarlo Cravotto EMAIL logo
Published/Copyright: September 30, 2015
Become an author with De Gruyter Brill

Abstract

There is currently a significant increase in the use of glycerol as a renewable solvent for catalytic reactions. Glycerol has often been the solvent of choice in both homogeneous and heterogeneous catalyses, despite its high viscosity at ambient temperature and the low solubility of highly hydrophobic reagents found in glycerol. Its biodegradability and non-toxicity have led to reports of improved reaction performance and selectivity, as well as easier product separation and effective catalyst recycling. All relevant advances in this emerging field of “green” catalysis are thoroughly reviewed below.

References

Azua, A., Mata, J. A., & Peris, E. (2011). Iridium NHC based catalysts for transfer hydrogenation processes using glycerol as solvent and hydrogen donor. Organometallics, 30, 5532-5536. DOI: 10.1021/om200796c.10.1021/om200796cSearch in Google Scholar

Azua, A., Mata, J. A., Peris, E., Lamaty, F., Martinez, J., & Colacino, E. (2012). Alternative energy input for transfer hydrogenation using iridium NHC based catalysts in glycerol as hydrogen donor and solvent. Organometallics, 31, 3911-3919. DOI: 10.1021/om300109e.10.1021/om300109eSearch in Google Scholar

Azua, A., Mata, J. A., Heymes, P., Peris, E., Lamaty, F., Martinez, J., & Colacino, E. (2013). Palladium Nheterocyclic carbene catalysts for the ultrasound-promoted Suzuki-Miyaura reaction in glycerol. Advanced Synthesis & Catalysis, 355, 1107-1116. DOI: 10.1002/adsc.201201047.10.1002/adsc.201201047Search in Google Scholar

Benoit, M., Brissonnet, Y., Guélou, E., De Oliveira Vigier, K., Barrault, J., & Fran,cois, J. (2010). Acid-catalyzed dehydration of fructose and inulin with glycerol or glycerol carbonate as renewably sourced co-solvent. ChemSusChem, 3, 1304-1309. DOI: 10.1002/cssc.201000162.10.1002/cssc.201000162Search in Google Scholar PubMed

Carmona, R. C., Schevciw, E. P., Petrarca de Albuquerque, J. L., Wendler, E. P., & Dos Santos, A. A. (2013). Joint use of microwave and glycerol-zinc(II) acetate catalytic system in the synthesis of 2-pyridyl-2-oxazolines. Green Process and Synthesis, 2, 35-42. DOI 10.1515/gps-2012-0085.10.1515/gps-2012-0085Search in Google Scholar

Chahdoura, F., Pradel, C., & Gómez, M. (2013a). Palladium nanoparticles in glycerol: A versatile catalytic system for C-X bond formation and hydrogenation processes. Advanced Synthesis & Catalysis, 355, 3648-3660. DOI: 10.1002/adsc.201300753.10.1002/adsc.201300753Search in Google Scholar

Chahdoura, F., Dubrulle, L., Fourmy, K., Durand, J., Madec, D., & Gómez, M. (2013b). Glycerol - a non-innocent solvent for Rh-catalysed Pauson-Khand carbocyclisations. European Journal of Inorganic Chemistry, 2013, 5138-5144. DOI: 10.1002/ejic.201300651.10.1002/ejic.201300651Search in Google Scholar

Chahdoura, F., Favier, I., & Gomez, M. (2014a). Glycerol as suitable solvent for the synthesis of metallic species and catalysis. Chemistry - A European Journal, 20, 10884-10893. DOI: 10.1002/chem.201403534.10.1002/chem.201403534Search in Google Scholar PubMed

Chahdoura, F., Pradel, C., & Gómez, M. (2014b). Copper(I) oxide nanoparticles in glycerol: A convenient catalyst for crosscoupling and azide-alkyne cycloaddition processes. Chem- CatChem, 6, 2929-2936. DOI: 10.1002/cctc.201402214.10.1002/cctc.201402214Search in Google Scholar

Chahdoura, F., Mallet-Ladeira, S., & Gómez, M. (2015). Palladium nanoparticles in glycerol: A clear-cut catalyst for onepot multi-step processes applied in the synthesis of heterocyclic compounds. Organic Chemistry Frontiers, 2, 312-318. DOI: 10.1039/c4qo00338a.10.1039/C4QO00338ASearch in Google Scholar

Cintas, P., Tagliapietra, S., Calcio Gaudino, E., Palmisano, G., & Cravotto, G. (2014). Glycerol: A solvent and a building block of choice for microwave and ultrasound irradiation procedures. Green Chemistry, 16, 1056-1065. DOI: 10.1039/c3gc41955j.10.1039/c3gc41955jSearch in Google Scholar

Cravotto, G., Orio, L., Calcio Gaudino, E., Martina, K., Tavor, D., & Wolfson, A. (2011). Efficient synthetic protocols in glycerol under heterogeneous catalysis. ChemSusChem, 4, 1130-1134. DOI: 10.1002/cssc.201100106.10.1002/cssc.201100106Search in Google Scholar PubMed

Delample, M., Villandier, N., Douliez, J. P., Camy, S., Condoret, J. S., Pouilloux, Y., Barrault, J., & Jérôme, F. (2010). Glycerol as a cheap, safe and sustainable solvent for the catalytic and regioselective β, β-diarylation of acrylates over palladium nanoparticles. Green Chemistry, 12, 804-808. DOI: 10.1039/b925021b.10.1039/b925021bSearch in Google Scholar

Díaz-Álvarez, A. E., Crochet, P., & Cadierno, V. (2011). Ruthenium-catalyzed reduction of allylic alcohols using glycerol as solvent and hydrogen donor. Catalysis Communications, 13, 91-96. DOI: 10.1016/j.catcom.2011.07.006.10.1016/j.catcom.2011.07.006Search in Google Scholar

Díaz-Álvarez, A. E., & Cadierno, V. (2013). Glycerol: A promising green solvent and reducing agent for metal-catalyzed transfer hydrogenation reactions and nanoparticles formation. Applied Sciences, 3, 55-69. DOI: 10.3390/app3010055.10.3390/app3010055Search in Google Scholar

Díaz-Álvarez, A. E., Francos, J., Croche, P., & Cadierno, V. (2014). Recent advances in the use of glycerol as green solvent for synthetic organic chemistry. Current Green Chemistry, 1, 51-65. DOI: 10.2174/221334610101131218094907.10.2174/221334610101131218094907Search in Google Scholar

Francos, J., & Cadierno, V. (2010). Palladium-catalyzed cycloisomerization of (Z)-enynols into furans using green solvents: Glycerol vs. water. Green Chemistry, 12, 1552-1555. DOI: 10.1039/c0gc00169d.10.1039/c0gc00169dSearch in Google Scholar

García-Marín, H., van der Toorn, J. C., Mayoral, J. A., Garcia, J. I., & Arends, I. W. C. E. (2009). Glycerol-based solvents as green reaction media in epoxidations with hydrogen peroxide catalysed by bis[3,5-bis(trifluoromethyl)- diphenyl] diselenide. Green Chemistry, 11, 1605-1609. DOI: 10.1039/b913052g.10.1039/b913052gSearch in Google Scholar

García-Marín, H., van der Toorn, J. C., Mayoral, J. A., Garcia, J. I., & Arends, I. W. C. E. (2011). Epoxidation of cyclooctene and cyclohexene with hydrogen peroxide catalyzed by bis[3,5-bis(trifluoromethyl)-diphenyl] diselenide: Recyclable catalyst-containing phases through the use of glycerol-derived solvents. Journal of Molecular Catalysis A, 334, 83-88. DOI: 10.1016/j.molcata.2010.10.027.10.1016/j.molcata.2010.10.027Search in Google Scholar

Gawande, M. B., Rathi, A. K., Branco, P. S., Nogueira, I. D., Velhinho, A., Shrikhande, J. J., Indulkar, U. U., Jayaram, R. V., Ghumman, C. A. A., Bundaleski, N., & Teodoro, O. M. N. D. (2012). Regio- and chemoselective reduction of nitroarenes and carbonyl compounds over recyclable magnetic ferritenickel nanoparticles (Fe3O4-Ni) by using glycerol as a hydrogen source. Chemistry - A European Journal, 18, 12628-12632. DOI: 10.1002/chem.201202380.10.1002/chem.201202380Search in Google Scholar PubMed

Gonçalves, L. C., Fiss, G. F., Perin, G., Alves, D., Jacob, R. G., & Lenardão, E. J. (2010). Glycerol as a promoting medium for cross-coupling reactions of diaryl diselenides with vinyl bromides. Tetrahedron Letters, 51, 6772-6775. DOI: 10.1016/j.tetlet.2010.10.107.10.1016/j.tetlet.2010.10.107Search in Google Scholar

Guyon, C., Métay, E., Duguet, N., & Lemaire, M. (2013). Biphasic glycerol/2-MeTHF, ruthenium-catalysed enantioselective transfer hydrogenation of ketones using sodium hypophosphite as hydrogen donor. European Journal of Organic Chemistry, 2013, 5439-5444. DOI: 10.1002/ejoc.201300506.10.1002/ejoc.201300506Search in Google Scholar

Handy, S., & Lavender, K. (2013). Organic synthesis in deep eutectic solvents: Paal-Knorr reactions. Tetrahedron Letters, 54, 4377-4379. DOI: 10.1016/j.tetlet.2013.05.122.10.1016/j.tetlet.2013.05.122Search in Google Scholar

Karam, A., Villandier, N., Delample, M., Klein Koerkamp, C., Douliez, J. P., Granet, R., Krausz, P., Barrault, J., & Jérôme, F. (2008). Rational design of sugar-based-surfactant combined catalysts for promoting glycerol as a solvent. Chemistry - A European Journal, 14, 10196-10200. DOI: 10.1002/chem.200801495.10.1002/chem.200801495Search in Google Scholar PubMed

Pagliaro, M., & Rossi, M. (2008). The future of glycerol: New usages for a versatile raw material. Cambridge, UK: RSC Publishoing. DOI: 10.1039/9781847558305.10.1039/9781847558305Search in Google Scholar

Perin, G., Mesquita, K., Calheiro, T. P., Silva, M. S., Lenardăo, E. J., Alves, D., & Jacob, R. G. (2014). Synthesis of β-aryl- β-sulfanyl ketones by a sequential one-pot reaction using KF/Al2O3 in glycerol. Synthetic Communications, 44, 49-58. DOI: 10.1080/00397911.2013.788720.10.1080/00397911.2013.788720Search in Google Scholar

Quan, Z. J., Ren, R. G., Da, Y. X., Zhang, Z., & Wang, X. C. (2011). Glycerol as an alternative green reaction medium for multicomponent reactions using Ps-PEG-OSO3H as catalyst. Synthetic Communications, 41, 3106-3116. DOI: 10.1080/00397911.2010.517373.10.1080/00397911.2010.517373Search in Google Scholar

Ricordi, V. G., Freitas, C. S., Perin, G., Lenardăo, E. J., Jacob, R. G., Savegnago, L., & Alves, D. (2012). Glycerol as a recyclable solvent for copper-catalyzed cross-coupling reactions of diaryl diselenides with aryl boronic acids. Green Chemistry, 14, 1030-1034. DOI: 10.1039/c2gc16427b.10.1039/c2gc16427bSearch in Google Scholar

Sequeiros, A., Serrano, L., Briones, R., & Labidi, J. (2013). Lignin liquefaction under microwave heating. Journal of Applied Polymer Science, 130, 3292-3298. DOI: 10.1002/app.39577.10.1002/app.39577Search in Google Scholar

Sharma, N., Sharma, A., Shard, A., Kumar, R., Saima, & Sinha, A. K. (2011). Pd-catalyzed orthogonal Knoevenagel/ Perkin condensation-decarboxylation-Heck/Suzuki sequences: Tandem transformations of benzaldehydes into hydroxy-functionalized antidiabetic stilbene-cinnamoyl hybrids and asymmetric distyrylbenzenes. Chemistry - A European Journal, 17, 10350-10356. DOI: 10.1002/chem.201101174.10.1002/chem.201101174Search in Google Scholar PubMed

Soares, B., Gama, N., Freire, C., Barros-Timmons, A., Brandão, I., Silva, R., Pascoal Neto, C., & Ferreira, A. (2014). Ecopolyol production from industrial cork powder via acid liquefaction using polyhydric alcohols. ACS Sustainable Chemistry & Engineering, 2, 846-854. DOI: 10.1021/sc400 488c.Search in Google Scholar

Sutter, M., Pehlivan, L., Lafon, R., Dayoub, W., Raoul, Y., Métay, E., & Lemaire, M. (2013). 1,2,3-Trimethoxypropane, a glycerol-based solvent with low toxicity: New utilization for the reduction of nitrile, nitro, ester and acid functional groups with TMDS and a metal catalyst. Green Chemistry, 15, 3020-3026. DOI: 10.1039/c3gc41082j.10.1039/c3gc41082jSearch in Google Scholar

Tavor, D., Popov, S., Dlugy, C., & Wolfson, A. (2010). Catalytic transfer-hydrogenations of olefins in glycerol. Organic Communications, 3, 70-75.Search in Google Scholar

Tavor, D., Gefen, I., Dlugy, C., & Wolfson, A. (2011). Transfer hydrogenations of nitrobenzene using glycerol as solvent and hydrogen donor. Synthetic Communications, 41, 3409-3416. DOI: 10.1080/00397911.2010.518276.10.1080/00397911.2010.518276Search in Google Scholar

Wolfson, A., & Dlugy, C. (2007). Palladium-catalyzed Heck and Suzuki coupling in glycerol. Chemical Papers, 61, 228-232. DOI: 10.2478/s11696-007-0026-3.10.2478/s11696-007-0026-3Search in Google Scholar

Wolfson, A., Dlugy, C., Shotland, Y., & Tavor, D. (2009). Glycerol as solvent and hydrogen donor in transfer hydrogenation- dehydrogenation reactions. Tetrahedron Letters, 50, 5951-5953. DOI: 10.1016/j.tetlet.2009.08.035.10.1016/j.tetlet.2009.08.035Search in Google Scholar

Wolfson, A., Snezhko, A., Meyouhas, T., & Tavor, D. (2012). Glycerol derivatives as green reaction mediums. Green Chemistry Letters and Reviews, 5, 7-12. DOI: 10.1080/17518253.2011.572298.10.1080/17518253.2011.572298Search in Google Scholar

Wolfson, A., Dlugy, C., & Tavor, D. (2013). Baker’s yeast catalyzed asymmetric reduction of prochiral ketones in different reaction medium. Organic Communications, 6, 1-11. Search in Google Scholar

Received: 2015-4-11
Revised: 2015-6-7
Accepted: 2015-6-16
Published Online: 2015-9-30
Published in Print: 2015-12-1

Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Catalysis in glycerol: a survey of recent advances
  2. A rapid LC-MS/MS method for determination of urinary EtG and application to a cut-off limit study
  3. Validated chiral chromatographic methods for clopidogrel bisulphate and its related substances in bulk drug and pharmaceutical dosage forms
  4. Effect of SO2 on SCR activity of MnOx/PG catalysts at low temperature
  5. Preparation of Pd/Al2O3@silicalite-1 core–shell beads and their application to hydrogenation reactions
  6. Effect of rapid batch decompression on hydrolysate quality after hydrothermal pretreatment of wheat straw
  7. Anthocyanins profile, total phenolics and antioxidant activity of two Romanian red grape varieties: Feteascǎ neagrǎ and Bǎbeascǎ neagrǎ (Vitis vinifera)
  8. Polyphenols, radical scavenger activity, short-chain organic acids and heavy metals of several plants extracts from “Bucharest Delta”
  9. Reaction of anhydrous zinc chloride with 2,3-thiophenedicarbaldehyde bis(semicarbazone) (2,3BSTCH2) and bis(thiosemicarbazone) (2,3BTSTCH2): Crystal structure of {[C6H5N2S]+[ZnCl3(C6H4N2S)]−} complex
  10. Synthesis and evaluation of a novel hydrophobically associating polymer based on acrylamide for enhanced oil recovery
  11. Synthesis of cardanol-based photo-active SET-LRP initiator and its application to preparation of UV-cured resin
  12. Preparation, characterization and ion adsorption properties of functionalized polystyrene modified with 1,4-phenylene diisocyanate and diethylenetriamine
  13. Synthesis of lanthanide-based SBA-15 mesoporous hybrids by a novel route
  14. Comparative ESI FT-MS and MALDI-TOF structural analyses of representative human N-linked glycans
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0166/html
Scroll to top button