Home Synthesis of cardanol-based photo-active SET-LRP initiator and its application to preparation of UV-cured resin
Article
Licensed
Unlicensed Requires Authentication

Synthesis of cardanol-based photo-active SET-LRP initiator and its application to preparation of UV-cured resin

  • Chuan-Jie Cheng EMAIL logo , Xu Zhang , Xiong-Xiong Bai , Jin Li , Xing-Xing Cao and Jing-Lan Wang
Published/Copyright: September 30, 2015
Become an author with De Gruyter Brill

Abstract

A benzophenone-containing SET-LRP initiator based on renewable and abundant cardanol was synthesised in 71 % yield using the selective etherification reaction. Next, methyl methacrylate (MMA) as a monomer was polymerised under SET-LRP conditions using the newly prepared initiator to prepare cardanol-end poly(methyl methacrylate) (PMMA). The kinetic results of the polymerisation indicated that the reaction was controllable when the monomer conversion was lower than approximately 50 %, and the molecular masses of PMMA measured by GPC were higher than the theoretical values while the monomer conversion was more than 50 %. In addition, most of the carbon-carbon double bonds of the side hydrocarbon chain of the end-cardanol group in the PMMA were kept intact from 1H NMR spectrum characterisation. Accordingly, when the cardanolend PMMA together with a tertiary amine-containing cardanol derivative was irradiated by UV light, the corresponding UV-cured resin was obtained. The chemical resistance and hardness of the UV-cured film were enhanced with the increasing irradiation time.

References

Balachandran, V. S., Jadhav, S. R., Vemula, P. K., & John, G. (2013). Recent advances in cardanol chemistry in a nutshell: from a nut to nanomaterials. Chemical Society Reviews, 42, 427-438. DOI: 10.1039/c2cs35344j.10.1039/C2CS35344JSearch in Google Scholar PubMed

Bloise, E., Becerra-Herrera, M., Mele, G., Sayago, A., Carbone, L., D’Accolti, L., Mazzetto, S. E., & Vasapollo, G. (2014). Sustainable preparation of cardanol-based nanocarriers with embedded natural phenolic compounds. ACS Sustainable Chemistry & Engineering, 2, 1299-1304. DOI: 10.1021/sc500123r.10.1021/sc500123rSearch in Google Scholar

Chen, G. Q., & Patel, M. K. (2012). Plastics derived from biological sources: Present and future: A technical and environmental review. Chemical Reviews, 112, 2082-2099. DOI: 10.1021/cr200162d.10.1021/cr200162dSearch in Google Scholar PubMed

Cheng, C. J., Zha, J. W., Liu, Z. B., Shen, L., Sun, J., & Liu, Y. J. (2012). Synthesis and UV-curing properties of a photo-active cardanol derivative. Chinese Journal of Applied Chemistry, 29, 392-396. (in Chinese) 10.3724/SP.J.1095.2012.00254Search in Google Scholar

Cheng, C. J., Fu, Q. L., Bai, X. X., Liu, S. J., Shen, L., Fan, W. Q., & Li, H. X. (2013a). Facile synthesis of gemini surfaceactive ATRP initiator and its use in soap-free AGET ATRP mini-emulsion polymerisation. Chemical Papers, 67, 336-341. DOI: 10.2478/s11696-012-0271-y.10.2478/s11696-012-0271-ySearch in Google Scholar

Cheng, C., Bai, X., Liu, S., Huang, Q., Tu, Y.,Wu, H., &Wang, X. (2013b). UV cured polymer based on a renewable cardanol derived RAFT agent. Journal of Polymer Research, 20, article no. 197. DOI: 10.1007/s10965-013-0197-2.10.1007/s10965-013-0197-2Search in Google Scholar

Cheng, C., Bai, X., Zhang, X., Chen, M., Huang, Q., Hu, Z., & Tu, Y. (2014a). Facile synthesis of block copolymers from a cinnamate derivative by combination of AGET ATRP and click chemistry. Macromolecular Research, 22, 1306-1311. DOI: 10.1007/s13233-014-2180-0.10.1007/s13233-014-2180-0Search in Google Scholar

Cheng, C. J., Bai, X. X., Fan, W. Q., Wu, H. M., Shen, L., Huang, Q. H., & Tu, Y. M. (2014b). Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemul sion polymerisation and UV curing. Chemical Papers, 68, 136-144. DOI: 10.2478/s11696-013-0420-y.10.2478/s11696-013-0420-ySearch in Google Scholar

Chu, D. S. H., Schellinger, J. G., Shi, J., Convertine, A. J., Stayton, P. S., & Pun, S. H. (2012). Application of living free radical polymerization for nucleic acid delivery. Accounts of Chemical Research, 45, 1089-1099. DOI: 10.1021/ar200242z.10.1021/ar200242zSearch in Google Scholar PubMed PubMed Central

Dadashi-Silab, S., Bildirir, H., Dawson, R., Thomas, A., & Yagci, Y. (2014). Microporous thioxanthone polymers as heterogeneous photoinitiators for visible light induced free radical and cationic polymerizations. Macromolecules, 47, 4607-4614. DOI: 10.1021/ma501001m.10.1021/ma501001mSearch in Google Scholar

Edlund, U., & Albertsson, A. C. (2012). SET-LRP goes “green”: Various hemicellulose initiating systems under non-inert conditions. Journal of Polymer Science: Part A: Polymer Chemistry, 50, 2650-2658. DOI: 10.1002/pola.26041.10.1002/pola.26041Search in Google Scholar

Edlund, U., Rodriguez-Emmenegger, C., Brynda, E., & Albertsson, A. C. (2012). Self-assembling zwitterionic carboxybetaine copolymers via aqueous SET-LRP from hemicellulose multi-site initiators. Polymer Chemistry, 3, 2920-2927. DOI: 10.1039/c2py20421e.10.1039/c2py20421eSearch in Google Scholar

Jing, R., Wang, G., Zhang, Y., & Huang, J. (2011). Onepot synthesis of PS-b-PEO-b-PtBA triblock copolymers via combination of SET-LRP and “click” chemistry using copper( 0)/PMDETA as catalyst system. Macromolecules, 44, 805-810. DOI: 10.1021/ma102621k.10.1021/ma102621kSearch in Google Scholar

Konkolewicz, D., Wang, Y., Zhong, M., Krys, P., Isse, A. A., Gennaro, A., & Matyjaszewski, K. (2013). Reversibledeactivation radical polymerization in the presence of metallic copper. A critical assessment of the SARA ATRP and SET-LRP mechanisms. Macromolecules, 46, 8749-8772. DOI: 10.1021/ma401243k.10.1021/ma401243kSearch in Google Scholar

Konkolewicz, D., Wang, Y., Krys, P., Zhong, M., Isse, A. A., Gennaro, A., & Matyjaszewski, K. (2014). SARA ATRP or SET-LRP. End of controversy? Polymer Chemistry, 5, 4396-4417. DOI: 10.1039/c4py00149d.10.1039/c4py00149dSearch in Google Scholar

Król, P., & Chmielarz, P. (2014). Recent advances in ATRP methods in relation to the synthesis of copolymer coating materials. Progress in Organic Coatings, 77, 913-948. DOI: 10.1016/j.porgcoat.2014.01.027.10.1016/j.porgcoat.2014.01.027Search in Google Scholar

Lee, S. K., Yoon, S. H., Chung, I., Hartwig, A., & Kim, B. K. (2011). Waterborne polyurethane nanocomposites having shape memory effects. Journal of Polymer Science: Part A: Polymer Chemistry, 49, 634-641. DOI: 10.1002/pola.24473.10.1002/pola.24473Search in Google Scholar

Matyjaszewski, K., Shipp, D. A., Wang, J. L., Grimaud, T., & Patten, T. E. (1998). Utilizing halide exchange to improve control of atom transfer radical polymerization. Macromolecules, 31, 6836-6840. DOI: 10.1021/ma980476r.10.1021/ma980476rSearch in Google Scholar

Matyjaszewski, K., & Xia, J. (2001). Atom transfer radical polymerization. Chemical Reviews, 101, 2921-2990. DOI: 10.1021/cr940534g.10.1021/cr940534gSearch in Google Scholar PubMed

Matyjaszewski, K. (2012). Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macromolecules, 45, 4015-4039. DOI: 10.1021/ma3001719.10.1021/ma3001719Search in Google Scholar

Matyjaszewski, K., & Tsarevsky, N. V. (2014). Macromolecular engineering by atom transfer radical polymerization. Journal of the American Chemical Society, 136, 6513-6533. DOI: 10.1021/ja408069v.10.1021/ja408069vSearch in Google Scholar PubMed

Mele, G., & Vasapollo, G. (2008). Fine chemicals and new hybrid materials from cardanol. Mini-Reviews in Organic Chemistry, 5, 243-253. DOI: 10.2174/157019308785161611.10.2174/157019308785161611Search in Google Scholar

Miller, S. A. (2013). Sustainable polymers: Opportunities for the next decade. ACS Macro Letters, 2, 550-554. DOI: 10.1021/mz400207g.10.1021/mz400207gSearch in Google Scholar PubMed

Modiba, E., Osifo, P., & Rutto, H. (2014). The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil. Chemical Papers, 68, 1341-1349. DOI: 10.2478/s11696-014-0583-1.10.2478/s11696-014-0583-1Search in Google Scholar

Percec, V., Guliashvili, T., Ladislaw, J. S.,Wistrand, A., Stjerndahl, A., Sienkowska, M. J., Monteiro, M. J., & Sahoo, S. (2006). Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25◦C. Journal of the American Chemical Society, 128, 14156-14165. DOI: 10.1021/ja065484z.10.1021/ja065484zSearch in Google Scholar PubMed

Rosen, B. M., & Percec, V. (2009). Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymerization. Chemical Reviews, 109, 5069-5119. DOI: 10.1021/cr900024j.10.1021/cr900024jSearch in Google Scholar PubMed

Saghatchi, F., Ahmadi, E., Mohamadnia, Z., Hajifatheali, H., Tabebordbar, H., & Karimi, F. (2014). Cu-based atom transfer radical polymerization of methyl methacrylate using a novel tridentate ligand with mixed donor atoms. Chemical Papers, 68, 1555-1560. DOI: 10.2478/s11696-014-0613-z.10.2478/s11696-014-0613-zSearch in Google Scholar

Santeusanio, S., Attanasi, O. A., Majer, R., Cangiotti, M., Fattori, A., & Ottaviani, M. F. (2013). Effect of hydrogenated cardanol on the structure of model membranes studied by EPR and NMR. Langmuir, 29, 11118-11126. DOI: 10.1021/la402008n.10.1021/la402008nSearch in Google Scholar PubMed

Suresh, K. I. (2013). Rigid polyurethane foams from cardanol: Synthesis, structural characterization, and evaluation of polyol and foam properties. ACS Sustainable Chemistry & Engineering, 1, 232-242. DOI: 10.1021/sc300079z.10.1021/sc300079zSearch in Google Scholar

Tasdelen, M. A., Kahveci, M. U., & Yagci, Y. (2011). Telechelic polymers by living and controlled/living polymerization methods. Progress in Polymer Science, 36, 455-567. DOI: 10.1016/j.progpolymsci.2010.10.002.10.1016/j.progpolymsci.2010.10.002Search in Google Scholar

Temel, G., Karaca, N., & Arsu, N. (2010). Synthesis of main chain polymeric benzophenone photoinitiator via thiol-ene click chemistry and its use in free radical polymerization. Journal of Polymer Science: Part A: Polymer Chemistry, 48, 5306-5312. DOI: 10.1002/pola.24330.10.1002/pola.24330Search in Google Scholar

Ugur, M. H., Kılıç, H., Berkem, M. L., Güngör, A. (2014). Synthesis by UV-curing and characterisation of polyurethane acrylate-lithium salts-based polymer electrolytes in lithium batteries. Chemical Papers, 68, 1561-1572. DOI: 10.2478/ s11696-014-0611-1.10.2478/s11696-014-0611-1Search in Google Scholar

Vennestrøm, P. N. R., Osmundsen, C. M., Christensen, C. H., & Taarning, E. (2011). Beyond petrochemicals: The renewable chemicals industry. Angewandte Chemie International Edition, 50, 10502-10509. DOI: 10.1002/anie.201102117.10.1002/anie.201102117Search in Google Scholar PubMed

Voirin, C., Caillol, S., Sadavarte, N. V., Tawade, B. V., Boutevin, B., & Wadgaonkar, P. P. (2014). Functionalization of cardanol: towards biobased polymers and additives. Polymer Chemistry, 5, 3142-3162. DOI: 10.1039/c3py01194a.10.1039/C3PY01194ASearch in Google Scholar

Wang, W., Zhang, Z., Cheng, Z., Zhu, J., Zhou, N., & Zhu, X. (2012). Favorable hydrogen bonding in roomtemperature Cu(0)-mediated controlled radical polymerization of 4-vinylpyridine. Polymer Chemistry, 3, 2731-2734. DOI: 10.1039/c2py20283b.10.1039/c2py20283bSearch in Google Scholar

Wang, W., Zhao, J., Zhang, W., Zhu, J., Zhang, Z., & Zhu, X. (2013). Ligand-free SET-DTLRP of MMA at room temperature. Journal of Polymer Science, Part A: Polymer Chemistry, 51, 1872-1879. DOI: 10.1002/pola.26570.10.1002/pola.26570Search in Google Scholar

Yang, Z., Wicks, D. A., Yuan, J., Pu, H., & Liu, Y. (2010). Newly UV-curable polyurethane coatings prepared by multifunctional thiol- and ene-terminated polyurethane aqueous dispersions: Photopolymerization properties. Polymer, 51, 1572-1577. DOI: 10.1016/j.polymer.2010.02.003.10.1016/j.polymer.2010.02.003Search in Google Scholar

Yao, K., & Tang, C. (2013). Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules, 46, 1689-1712. DOI: 10.1021/ma3019574.10.1021/ma3019574Search in Google Scholar

Zhang, X. F., Wu, Y., Huang, J., Miao, X. L., Zhang, Z. B., & Zhu, X. L. (2013). Copper(0)-mediated radical polymerization of styrene at room temperature. Chinese Journal of Polymer Science, 31, 702-712. DOI: 10.1007/s10118-013-1243-6. 10.1007/s10118-013-1243-6Search in Google Scholar

Received: 2015-3-29
Revised: 2015-6-21
Accepted: 2015-6-24
Published Online: 2015-9-30
Published in Print: 2015-12-1

Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Catalysis in glycerol: a survey of recent advances
  2. A rapid LC-MS/MS method for determination of urinary EtG and application to a cut-off limit study
  3. Validated chiral chromatographic methods for clopidogrel bisulphate and its related substances in bulk drug and pharmaceutical dosage forms
  4. Effect of SO2 on SCR activity of MnOx/PG catalysts at low temperature
  5. Preparation of Pd/Al2O3@silicalite-1 core–shell beads and their application to hydrogenation reactions
  6. Effect of rapid batch decompression on hydrolysate quality after hydrothermal pretreatment of wheat straw
  7. Anthocyanins profile, total phenolics and antioxidant activity of two Romanian red grape varieties: Feteascǎ neagrǎ and Bǎbeascǎ neagrǎ (Vitis vinifera)
  8. Polyphenols, radical scavenger activity, short-chain organic acids and heavy metals of several plants extracts from “Bucharest Delta”
  9. Reaction of anhydrous zinc chloride with 2,3-thiophenedicarbaldehyde bis(semicarbazone) (2,3BSTCH2) and bis(thiosemicarbazone) (2,3BTSTCH2): Crystal structure of {[C6H5N2S]+[ZnCl3(C6H4N2S)]−} complex
  10. Synthesis and evaluation of a novel hydrophobically associating polymer based on acrylamide for enhanced oil recovery
  11. Synthesis of cardanol-based photo-active SET-LRP initiator and its application to preparation of UV-cured resin
  12. Preparation, characterization and ion adsorption properties of functionalized polystyrene modified with 1,4-phenylene diisocyanate and diethylenetriamine
  13. Synthesis of lanthanide-based SBA-15 mesoporous hybrids by a novel route
  14. Comparative ESI FT-MS and MALDI-TOF structural analyses of representative human N-linked glycans
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0176/html
Scroll to top button