Home Effect of SO2 on SCR activity of MnOx/PG catalysts at low temperature
Article
Licensed
Unlicensed Requires Authentication

Effect of SO2 on SCR activity of MnOx/PG catalysts at low temperature

  • Xian-Long Zhang , Shuang-Shuang Lv , Cui-Ping Zhang , Xue-Ping Wu EMAIL logo , Lian-Feng Zhang , Jun-Wei Wang , Xiao-Bin Jia and Heng-Jian Zhang
Published/Copyright: September 30, 2015
Become an author with De Gruyter Brill

Abstract

Palygorskite (PG)-supported manganese oxide catalysts (MnOx/PG) were prepared for the selective catalytic reduction (SCR) of NO with ammonia in the presence of SO2 at low temperature. The influence of gaseous SO2 on the performance of the catalyst was studied by means of specific surface area (Brunauer-Emmett-Teller, BET) analysis, scanning electron microscopy (SEM), thermogravimetric (TG) analysis, temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). The results showed that the SCR activity of Mn10/PG was significantly inhibited by gaseous SO2 at temperatures below 300°C. However, the SCR activity of Mn10/PG was markedly promoted by SO2 in a higher temperature range of 300°C to 500°C. The sulphating of surface active species (MnOx) was suggested to inhibit the oxidation of NH3 to NO leading to enhancement of the SCR activity at a higher temperature range of 300°C to 500°C and decrease in the SCR activity at temperatures below 300°C.

References

Aguero, F. N., Barbero, B. P., Gambaro, L., & Cadús, L. E. (2009). Catalytic combustion of volatile organic compounds in binary mixtures over MnOx/Al2O3 catalyst. Applied Catalysis B: Environmental, 91, 108-112. DOI: 10.1016/j.apcatb.2009.05.012.10.1016/j.apcatb.2009.05.012Search in Google Scholar

Amiridis, M. D., Duevel, R. V., & Wachs, I. E. (1999). The effect of metal oxide additives on the activity of V2O5/TiO2 catalysts for the selective catalytic reduction of nitric oxide by ammonia. Applied Catalysis B: Environmental, 20, 111-122. DOI: 10.1016/s0926-3373(98)00101-5.10.1016/S0926-3373(98)00101-5Search in Google Scholar

Busca, G., Lietti, L., Ramis, G., & Berti, F. (1998). Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review. Applied Catalysis B: Environmental, 18, 1-36. DOI: 10.1016/s0926-3373(98)00040-x.10.1016/S0926-3373(98)00040-XSearch in Google Scholar

Chen, H., Zhao, J., Zhong, A. G., & Jin, Y. X. (2011). Removal capacity and adsorption mechanism of heat-treated palygorskite clay for methylene blue. Chemical Engineering Journal, 174, 143-150. DOI: 10.1016/j.cej.2011.08.062.10.1016/j.cej.2011.08.062Search in Google Scholar

Fang, D., He, F., Xie, J. L., Hu, H., & Shi, Z. Y. (2013). Distributions and species of MnOx included in MnOx/TiO2 catalysts for denitration at low temperature. Materials Science Forum, 743, 269-274. DOI: 10.4028/www.scientific.net/msf. 743-744.269.10.4028/www.scientific.net/MSFSearch in Google Scholar

Huang, J. H., Tong, Z. Q., Huang, Y., & Zhang, J. F. (2008). Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Applied Catalysis B: Environmental, 78, 309-314. DOI: 10.1016/j.apcatb.2007.09.031.10.1016/j.apcatb.2007.09.031Search in Google Scholar

Jiang, B. Q., Liu, Y., & Wu, Z. B. (2009). Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different method. Journal of Hazardous Materials, 162, 1249-1254. DOI: 10.1016/j.jhazmat.2008.06.013.10.1016/j.jhazmat.2008.06.013Search in Google Scholar PubMed

Jin, R. B., Liu, Y., Wu, Z. B., Wang, H. Q., & Gu, T. T. (2010). Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn-Ce/TiO2 catalyst. Catalysis Today, 153, 84-89. DOI: 10.1016/j.cattod.2010.01.039.10.1016/j.cattod.2010.01.039Search in Google Scholar

Kang, M., Park, E. D., & Kim, J. M. (2007). Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Applied Catalysis A: General, 327, 261-269. DOI: 10.1016/j.apcata.2007.05.024.10.1016/j.apcata.2007.05.024Search in Google Scholar

Kapteijn, F., Vanlangeveld, A. D., Moulijn, J. A., Andreini, A., Vuurman, M. A., Turek, A. M., Jehng, J. M., & Wachs, I. E. (1994). Alumina-supported manganese oxide catalysts: I. Characterization: effect of precursor and loading. Journal of Catalysis, 150, 94-104. DOI: 10.1006/jcat.1994.1325.10.1006/jcat.1994.1325Search in Google Scholar

Karami, A., & Salehi, V. (2012). The influence of chromium substitution on an iron-titanium catalyst used in the selective catalytic reduction of NO. Journal of Catalysis, 292, 32-43. DOI: 10.1016/j.jcat.2012.04.007.10.1016/j.jcat.2012.04.007Search in Google Scholar

Kijlstra, W. S., Biervliet, M., Poels, E. K., & Bliek, A. (1998). Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B: Environmental, 16, 327-337. DOI: 10.1016/s0926-3373(97)00089-1.10.1016/S0926-3373(97)00089-1Search in Google Scholar

Kim, Y. J., Kwon, H. J., Nam, I. S., Choung, J. W., Kil, J. K., Kim, H. J., Cha, M. S., & Yeo, G. K. (2010). High deNOx performance of Mn/TiO2 catalyst by NH3. Catalysis Today, 151, 244-250. DOI: 10.1016/j.cattod.2010.02.074.10.1016/j.cattod.2010.02.074Search in Google Scholar

Li, J. H., Chen, J. J., Ke, R., Luo, C. K., & Hao, J. M. (2007). Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2. Catalysis Communications, 8, 1896-1900. DOI: 10.1016/j.catcom.2007.03.007.10.1016/j.catcom.2007.03.007Search in Google Scholar

Li, J. H., Zhang, X. L., & Chen, T. H. (2010). Characterization and ammonia adsorption-desorption of palygorskitesupported manganese oxide as a low-temperature selective catalytic reduction catalyst. Chinese Journal of Catalysis, 31, 454-460. DOI: 10.3724/sp.j.1088.2010.91001.10.3724/SP.J.1088.2010.91001Search in Google Scholar

Li, J. H., Chang, H. Z.,Ma, L., Hao, J. M., & Yang, R. T. (2011). Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review. Catalysis Today, 175, 147-156. DOI: 10.1016/j.cattod.2011.03.034.10.1016/j.cattod.2011.03.034Search in Google Scholar

Nova, I., Ciardelli, C., Tronconi, E., Chatterjee, D., & Bandl- Konrad, B. (2006). NH3-NO/NO2 chemistry over V-based catalysts and its role in the mechanism of the Fast SCR reaction. Catalysis Today, 114, 3-12. DOI: 10.1016/j.cattod.2006.02.012.10.1016/j.cattod.2006.02.012Search in Google Scholar

Park, T. S., Jeong, S. K., Hong, S. H., & Hong, S. C. (2001). Selective catalytic reduction of nitrogen oxides with NH3 over natural manganese ore at low temperature. Industrial & Engineering Chemistry Research, 40, 4491-4495. DOI: 10.1021/ie010218+.10.1021/ie010218+Search in Google Scholar

Park, E., Kim, M., Jung, H., Chin, S., & Jurng, J. (2013). Effect of sulfur on Mn/Ti catalysts prepared using chemical vapor condensation (CVC) for low-temperature NO reduction. Acs Catalysis, 3, 1518-1525. DOI: 10.1021/cs3007846.10.1021/cs3007846Search in Google Scholar

Peña, D. A., Uphade, B. S., & Smirniotis, P. G. (2004). TiO2- supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals. Journal of Catalysis, 221, 421-431. DOI: 10.1016/j.jcat.2003.09.003.10.1016/j.jcat.2003.09.003Search in Google Scholar

Qi, G. S., & Yang, R. T. (2003). Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania. Applied Catalysis B-Environmental, 44, 217-225. DOI: 10.1016/s0926-3373(03)00100-0.10.1016/S0926-3373(03)00100-0Search in Google Scholar

Schneider, H., Maciejewski, M., Kohler, K., Wokaun, A., & Baiker, A. (1995). Chromia supported on titania VI. Prop erties of different chromium oxide phases in the catalytic reduction of NO by NH3 studied by in situ diffuse reflectance FTIR spectroscopy. Journal of Catalysis, 157, 312-320. DOI: 10.1006/jcat.1995.1296.10.1006/jcat.1995.1296Search in Google Scholar

Shen, B. X., & Liu, T. (2010). Deactivation of MnOx- CeOx/ACF catalysts for low-temperature NH3-SCR in the presence of SO2. Acta Physico-Chimica Sinica, 26, 3009-3016. DOI: 10.3866/pku.whxb20101120.10.3866/PKU.WHXB20101120Search in Google Scholar

Smirniotis, P. G., Sreekanth, P. M., Peña, D. A., & Jenkins, R. G. (2006). Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2: A comparison for low-temperature SCR of NO with NH3. Industrial & Engineering Chemistry Research, 45, 6436-6443. DOI: 10.1021/ie060484t.10.1021/ie060484tSearch in Google Scholar

Sreekanth, P. M., Peña, D. A., & Smirniotis, P. G. (2006). Titania supported bimetallic transition metal oxides for lowtemperature SCR of NO with NH3. Industrial & Engineering Chemistry Research, 45, 6444-6449. DOI: 10.1021/ie060485l.10.1021/ie060485lSearch in Google Scholar

Tang, X. L., Hao, J. M., Yi, H. H., & Li, J. H. (2007). Lowtemperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts. Catalysis Today, 126, 406-411. DOI: 10.1016/j.cattod.2007.06.013.10.1016/j.cattod.2007.06.013Search in Google Scholar

Thirupathi, B., & Smirniotis, P. G. (2011). Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Applied Catalysis B: Environmental, 110, 195-206. DOI: 10.1016/j.apcatb.2011.09.001.10.1016/j.apcatb.2011.09.001Search in Google Scholar

Topsoe, N. Y., Topsoe, H., & Dumesic, J. (1995). Vanadia/ titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia: I. Combined temperatureprogrammed in-situ FTIR and on-line mass-spectroscopy studies. Journal of Catalysis, 151, 226-240. DOI: 10.1006/ jcat.1995.1024.10.1006/jcat.1995.1024Search in Google Scholar

Wallin, M., Forser, S., Thormählen, P., & Skoglundh, M. (2004). Screening of TiO2-supported catalysts for selective NOx reduction with ammonia. Industrial & Engineering Chemistry Research, 43, 7723-7731. DOI: 10.1021/ie049695t.10.1021/ie049695tSearch in Google Scholar

Wang, Y. L., Li, X. X., Zhan, L., Li, C., Qiao, W. M., & Ling, L. C. (2015). Effect of SO2 on activated carbon honeycomb supported CeO2-MnOx catalyst for NO removal at low temperature. Industrial & Engineering Chemistry Research, 54, 2274-2278. DOI: 10.1021/ie504074h.10.1021/ie504074hSearch in Google Scholar

Wu, Z. B., Jin, R. B., Wang, H. Q., & Liu, Y. (2009). Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature. Catalysis Communications, 10, 935-939. DOI: 10.1016/j.catcom.2008.12.032.10.1016/j.catcom.2008.12.032Search in Google Scholar

Yu, J., Guo, F., Wang, Y. L., Zhu, J. H., Liu, Y. Y., Su, F. B., Gao, S. Q., & Xu, G. W. (2010). Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3. Applied Catalysis B: Environmental, 95, 160-168. DOI: 10.1016/j.apcatb.2009.12.023.10.1016/j.apcatb.2009.12.023Search in Google Scholar

Zhang, Y. P., Zhao, X. Y., Xu, H. T., Shen, K., Zhou, C. C., Jin, B. S., & Sun, K. Q. (2011). Novel ultrasonicmodified MnOx/TiO2 for low-temperature selective catalytic reduction (SCR) of NO with ammonia. Journal of Colloid and Interface Science, 361, 212-218. DOI: 10.1016/j.jcis.2011.05.012.10.1016/j.jcis.2011.05.012Search in Google Scholar PubMed

Zhang, X. L., Jiang, W. P., Wu, X. P., Shi, B. W., Yang, B. J., Jia, X. B., & Zhang, Y. P. (2012). Effect of heat treatment on structural character and desulfurization capability of palygorskite. CIESC Journal, 63, 916-923.Search in Google Scholar

Zhang, C. P., Zhang, X. L., Wu, X. P., Zhang, L. F., Zhang, H. J., & Yang, B. J. (2013). The mechanism study of SO2 influence on the denitration of MnOx/PG catalysts at low temperature. Journal of Environmental Sciences-China, 33, 2686-2693. DOI: 10.13671/j.hjkxxb.2013.10.015.Search in Google Scholar

Zhao, Q. S., Xiang, J., Sun, L. S., Su, S., & Hu, S. (2009). Adsorption and oxidation of NH3 and NO over sol-gelderived CuO-CeO2-MnOx/γ-Al2O3 catalysts. Energy Fuel, 23, 1539-1544. DOI: 10.1021/ef8008844. 10.1021/ef8008844Search in Google Scholar

Received: 2015-3-15
Revised: 2015-6-12
Accepted: 2015-6-25
Published Online: 2015-9-30
Published in Print: 2015-12-1

Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Catalysis in glycerol: a survey of recent advances
  2. A rapid LC-MS/MS method for determination of urinary EtG and application to a cut-off limit study
  3. Validated chiral chromatographic methods for clopidogrel bisulphate and its related substances in bulk drug and pharmaceutical dosage forms
  4. Effect of SO2 on SCR activity of MnOx/PG catalysts at low temperature
  5. Preparation of Pd/Al2O3@silicalite-1 core–shell beads and their application to hydrogenation reactions
  6. Effect of rapid batch decompression on hydrolysate quality after hydrothermal pretreatment of wheat straw
  7. Anthocyanins profile, total phenolics and antioxidant activity of two Romanian red grape varieties: Feteascǎ neagrǎ and Bǎbeascǎ neagrǎ (Vitis vinifera)
  8. Polyphenols, radical scavenger activity, short-chain organic acids and heavy metals of several plants extracts from “Bucharest Delta”
  9. Reaction of anhydrous zinc chloride with 2,3-thiophenedicarbaldehyde bis(semicarbazone) (2,3BSTCH2) and bis(thiosemicarbazone) (2,3BTSTCH2): Crystal structure of {[C6H5N2S]+[ZnCl3(C6H4N2S)]−} complex
  10. Synthesis and evaluation of a novel hydrophobically associating polymer based on acrylamide for enhanced oil recovery
  11. Synthesis of cardanol-based photo-active SET-LRP initiator and its application to preparation of UV-cured resin
  12. Preparation, characterization and ion adsorption properties of functionalized polystyrene modified with 1,4-phenylene diisocyanate and diethylenetriamine
  13. Synthesis of lanthanide-based SBA-15 mesoporous hybrids by a novel route
  14. Comparative ESI FT-MS and MALDI-TOF structural analyses of representative human N-linked glycans
Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0175/html
Scroll to top button