Home Assessment of Urtica as a low-cost adsorbent for methylene blue removal: kinetic, equilibrium, and thermodynamic studies
Article
Licensed
Unlicensed Requires Authentication

Assessment of Urtica as a low-cost adsorbent for methylene blue removal: kinetic, equilibrium, and thermodynamic studies

  • Mohammad Peydayesh , Mojgan Isanejad , Toraj Mohammadi EMAIL logo and Seyed Mohammad Reza Seyed Jafari
Published/Copyright: March 27, 2015
Become an author with De Gruyter Brill

Abstract

Methylene blue (MB) removal using eco-friendly, cost-effective, and freely available Urtica was investigated. The morphology of the adsorbent surface and the nature of the possible Urtica and MB interactions were examined using SEM analysis and the FTIR technique, respectively. Various factors affecting MB adsorption such as adsorption time, initial MB concentration, temperature, and solution pH were investigated. The adsorption process was analysed using different kinetic models and isotherms. The results showed that the MB adsorption kinetic follows a pseudo-second-order kinetic model and the isotherm data fit the Langmuir isotherm well. Thermodynamic parameters, such as ΔG°, ΔH°, and ΔS°, were also evaluated, and the results indicated that the adsorption process is endothermic and spontaneous in nature. The MB adsorption capacity of Urtica was found to be as high as 101.01 mg g−1, higher than those of many other adsorbents studied in the literature. This superior adsorption capacity, along with the ready availability of Urtica, render this adsorbent potentially suitable for practical applications.

References

Ai, L. H., Zhou, Y., & Jiang, J. (2011). Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination, 266, 72-77. DOI: 10.1016/j.desal.2010.08.004.10.1016/j.desal.2010.08.004Search in Google Scholar

Annadurai, G., Juang, R. S., & Lee, D. J. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials, 92, 263-274. DOI: 10.1016/s0304-3894(02)00017-1.10.1016/S0304-3894(02)00017-1Search in Google Scholar

Ansari, R., & Mosayebzadeh, Z. (2011). Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters. Chemical Papers, 65, 1-8. DOI: 10.2478/s11696-010-0083-x.10.2478/s11696-010-0083-xSearch in Google Scholar

Auta, M., & Hameed, B. H. (2012). Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue. Chemical Engineering Journal, 198-199, 219-227. DOI: 10.1016/j.cej.2012.05.075.10.1016/j.cej.2012.05.075Search in Google Scholar

Auta, M., & Hameed, B. H. (2014). Chitosan-clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chemical Engineering Journal, 237, 352-361. DOI: 10.1016/j.cej.2013.09.066.10.1016/j.cej.2013.09.066Search in Google Scholar

Ayad, M. M., Abu El-Nasr, A., & Stejskal, J. (2012). Kinetics and isotherm studies of methylene blue adsorption onto polyaniline nanotubes base/silica composite. Journal of Industrial and Engineering Chemistry, 18, 1964-1969. DOI: 10.1016/j.jiec.2012.05.012.10.1016/j.jiec.2012.05.012Search in Google Scholar

Bao, Y. Z., & Zhang, G. L. (2012). Study of adsorption characteristics of methylene blue onto activated carbon made by Salix psammophila. Energy Procedia, 16B, 1141-1146. DOI: 10.1016/j.egypro.2012.01.182.10.1016/j.egypro.2012.01.182Search in Google Scholar

Bulut, Y., & Aydın, H. (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194, 259-267. DOI: 10.1016/j.desal.2005.10.032.10.1016/j.desal.2005.10.032Search in Google Scholar

Cherifi, H., Fatiha, B., & Salah, H. (2013). Kinetic studies on the adsorption of methylene blue onto vegetal fiber activated carbons. Applied Surface Science, 282, 52-59. DOI: 10.1016/j.apsusc.2013.05.031.10.1016/j.apsusc.2013.05.031Search in Google Scholar

Deepa, K., Chandran, P., & Sudheer Khan, S. (2013). Bioremoval of Direct Red from aqueous solution by Pseudomonas putida and its adsorption isotherms and kinetics. Ecological Engineering, 58, 207-213. DOI: 10.1016/j.ecoleng.2013.06. 037.Search in Google Scholar

Ebrahimzadeh Rajaei, G., Aghaie, H., Zare, K., & Aghaie, M. (2013). Adsorption of Cu(II) and Zn(II) ions from aqueous solutions onto fine powder of Typha latifolia L. root: kinetics and isotherm studies. Research on Chemical Intermediates, 39, 3579-3594. DOI: 10.1007/s11164-012-0864-7.10.1007/s11164-012-0864-7Search in Google Scholar

ElShafei, G. M. S., ElSherbiny, I. M. A., Darwish, A. S., & Philip, C. A. (2014). Silkworms’ feces-based activated carbons as cheap adsorbents for removal of cadmium and methylene blue from aqueous solutions. Chemical Engineering Research and Design, 92, 461-470. DOI: 10.1016/j.cherd.2013. 09.004.Search in Google Scholar

Ghaedi, M., Ghaedi, A. M., Abdi, F., Roosta, M., Vafaei, A., & Asghari, A. (2013a). Principal component analysisadaptive neuro-fuzzy inference system modeling and genetic algorithm optimization of adsorption of methylene blue by activated carbon derived from Pistacia khinjuk. Ecotoxicology and Environmental Safety, 96, 110-117. DOI: 10.1016/j.ecoenv.2013.05.015.10.1016/j.ecoenv.2013.05.015Search in Google Scholar PubMed

Ghaedi, M., Danaei Ghazanfarkhani, M., Khodadoust, S., Sohrabi, N., & Oftade, M. (2013b). Acceleration of methylene blue adsorption onto activated carbon prepared from dross licorice by ultrasonic: Equilibrium, kinetic and thermodynamic studies. Journal of Industrial and Engineering Chemistry, 20, 2548-2560. DOI: 10.1016/j.jiec.2013.10.039.10.1016/j.jiec.2013.10.039Search in Google Scholar

Gong, R. M., Li, M., Yang, C., Sun, Y. Z., & Chen, J. (2005). Removal of cationic dyes from aqueous solution by adsorption on peanut hull. Journal of Hazardous Materials, 121, 247-250. DOI: 10.1016/j.jhazmat.2005.01.029.10.1016/j.jhazmat.2005.01.029Search in Google Scholar PubMed

Gülçin, İ., Küfrevioğlu, Ö. İ., Oktay, M., & Büyükokuroğlu, M. E. (2004). Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). Journal of Ethnopharmacology, 90, 205-215. DOI: 10.1016/j.jep.2003.09.028.10.1016/j.jep.2003.09.028Search in Google Scholar PubMed

Gulshan, F., Yanagida, S., Kameshima, Y., Isobe, T., Nakajima, A., & Okada, K. (2010). Various factors affecting photodecomposition of methylene blue by iron-oxides in an oxalate solution. Water Research, 44, 2876-2884. DOI: 10.1016/j.watres.2010.01.040.10.1016/j.watres.2010.01.040Search in Google Scholar PubMed

Gupta, N., Kushwaha, A. K., & Chattopadhyaya, M. C. (2011). Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arabian Journal of Chemistry, in press. DOI: 10.1016/j.arabjc.2011.07.021.10.1016/j.arabjc.2011.07.021Search in Google Scholar

Hameed, B. H., & Ahmad, A. A. (2009). Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. Journal of Hazardous Materials, 164, 870-875. DOI: 10.1016/j.jhazmat.2008.08.084.10.1016/j.jhazmat.2008.08.084Search in Google Scholar PubMed

Han, X. L., Wang, W., & Ma, X. J. (2011). Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf. Chemical Engineering Journal, 171, 1-8. DOI: 10.1016/j.cej.2011.02.067.10.1016/j.cej.2011.02.067Search in Google Scholar

Ismail, B., Hussain, S. T., & Akram, S. (2013). Adsorption of methylene blue onto spinel magnesium aluminate nanoparticles: Adsorption isotherms, kinetic and thermodynamic studies. Chemical Engineering Journal, 219, 395-402. DOI: 10.1016/j.cej.2013.01.034.10.1016/j.cej.2013.01.034Search in Google Scholar

Kadirova, Z. C., Katsumata, K. i., Isobe, T., Matsushita, N., Nakajima, A., & Okada, K. (2013). Adsorption and photodegradation of methylene blue by iron oxide impregnated on granular activated carbons in an oxalate solution. Applied Surface Science, 284, 72-79. DOI: 10.1016/j.apsusc.2013.07. 014.Search in Google Scholar

Kazemi, P., Peydayesh, M., Bandegi, A., Mohammadi, T., & Bakhtiari, O. (2013). Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane. Chemical Papers, 67, 722-729. DOI: 10.2478/s11696-013-0374-0.10.2478/s11696-013-0374-0Search in Google Scholar

Li, Y. H., Du, Q. J., Liu, T. H., Sun, J. K., Wang, Y. H., Wu, S. L., Wang, Z. H., Xia, Y. Z., & Xia, L. H. (2013). Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohydrate Polymers, 95, 501-507. DOI: 10.1016/j.carbpol.2013.01.094.10.1016/j.carbpol.2013.01.094Search in Google Scholar PubMed

Liu, Y., Kang, Y. R., Mu, B., & Wang, A. Q. (2014). Attapulgite/ bentonite interactions for methylene blue adsorption characteristics from aqueous solution. Chemical Engineering Journal, 237, 403-410. DOI: 10.1016/j.cej.2013.10.048.10.1016/j.cej.2013.10.048Search in Google Scholar

Morshedi, D., Mohammadi, Z., Akbar Boojar, M. M., & Aliakbari, F. (2013). Using protein nanofibrils to remove azo dyes from aqueous solution by the coagulation process. Colloids and Surfaces B: Biointerfaces, 112, 245-254. DOI: 10.1016/j.colsurfb.2013.08.004.10.1016/j.colsurfb.2013.08.004Search in Google Scholar PubMed

Moussavi, G., & Khosravi, R. (2011). The removal of cationic dyes from aqueous solutions by adsorption onto pistachio hull waste. Chemical Engineering Research and Design, 89, 2182-2189. DOI: 10.1016/j.cherd.2010.11.024.10.1016/j.cherd.2010.11.024Search in Google Scholar

Pathania, D., Sharma, S., & Singh, P. (2013). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry, in press. DOI: 10.1016/j.arabjc.2013.04.021.10.1016/j.arabjc.2013.04.021Search in Google Scholar

Peydayesh, M., & Rahbar-Kelishami, A. (2015). Adsorption of methylene blue onto Platanus orientalis leaf powder: Kinetic, equilibrium and thermodynamic studies. Journal of Industrial and Engineering Chemistry, 21, 1014-1019. DOI: 10.1016/j.jiec.2014.05.010.10.1016/j.jiec.2014.05.010Search in Google Scholar

Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials, 177, 70-80. DOI: 10.1016/j.jhazmat.2009.12.047.10.1016/j.jhazmat.2009.12.047Search in Google Scholar PubMed

Raghu, S., Lee, C. W., Chellammal, S., Palanichamy, S., & Basha, C. A. (2009). Evaluation of electrochemical oxidation techniques for degradation of dye effluents-A comparative approach. Journal of Hazardous Materials, 171, 748-754. DOI: 10.1016/j.jhazmat.2009.06.063.10.1016/j.jhazmat.2009.06.063Search in Google Scholar PubMed

Rastogi, K., Sahu, J. N., Meikap, B. C., & Biswas, M. N. (2008). Removal of methylene blue from wastewater using fly ash as an adsorbent by hydrocyclone. Journal of Hazardous Materials, 158, 531-540. DOI: 10.1016/j.jhazmat.2008.01.105.10.1016/j.jhazmat.2008.01.105Search in Google Scholar PubMed

Uddin, M. T., Islam, M. A., Mahmud, S., & Rukanuzzaman, M. (2009). Adsorptive removal of methylene blue by tea waste. Journal of Hazardous Materials, 164, 53-60. DOI: 10.1016/j.jhazmat.2008.07.131.10.1016/j.jhazmat.2008.07.131Search in Google Scholar PubMed

Ullah, R., Hussain, I., & Ahmad, S. (2013). Diocanol; one new phenol derivative isolated and characterized from Urtica dioica. Arabian Journal of Chemistry, in press. DOI: 10.1016/j.arabjc.2013.03.009.10.1016/j.arabjc.2013.03.009Search in Google Scholar

Vieira Chagas, N., Percio Quinaia, S., Jaco Anaissi, F., Meira Santos, J., Felsner, M. L., Justi, K. C. (2014). Clay and charcoal composites: characterisation and application of factorial design analysis for dye adsorption. Chemical Papers, 68, 553-563. DOI: 10.2478/s11696-013-0472-z.10.2478/s11696-013-0472-zSearch in Google Scholar

Weng, C. H., & Pan, Y. F. (2007). Adsorption of a cationic dye (methylene blue) onto spent activated clay. Journal of Hazardous Materials, 144, 355-362. DOI: 10.1016/j.jhazmat. 2006.09.097.Search in Google Scholar

Yang, Z., Yang, H., Jiang, Z. W., Cai, T., Li, H. J., Li, H. B., Li, A. M., & Cheng, R. S. (2013). Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graftpolyacrylamide. Journal of Hazardous Materials, 254-255, 36-45. DOI: 10.1016/j.jhazmat.2013.03.053.10.1016/j.jhazmat.2013.03.053Search in Google Scholar PubMed

Yao, Y. J., Xu, F. F., Chen, M., Xu, Z. X., & Zhu, Z. W. (2010). Adsorption behavior of methylene blue on carbon nanotubes. Bioresource Technology, 101, 3040-3046. DOI: 10.1016/j.biortech.2009.12.042.10.1016/j.biortech.2009.12.042Search in Google Scholar PubMed

Zhang, J., Cai, D. Q., Zhang, G. L., Cai, C. J., Zhang, C. L., Qiu, G. N., Zheng, K., & Wu, Z. Y. (2013). Adsorption of methylene blue from aqueous solution onto multiporous palygorskite modified by ion beam bombardment: Effect of contact time, temperature, pH and ionic strength. Applied Clay Science, 83-84, 137-143. DOI: 10.1016/j.clay.2013.08.033.10.1016/j.clay.2013.08.033Search in Google Scholar

Zhao, M. F., & Liu, P. (2008). Adsorption behavior of methylene blue on halloysite nanotubes. Microporous and Mesoporous Materials, 112, 419-412. DOI: 10.1016/j.micromeso.2007.10. 018. Search in Google Scholar

Received: 2014-10-11
Revised: 2014-12-8
Accepted: 2014-12-16
Published Online: 2015-3-27
Published in Print: 2015-7-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Voltammetric determination of B1 and B6 vitamins using a pencil graphite electrode
  2. An electrochemical sensor for sensitive determination of nitrites based on Ag–Fe3O4–graphene oxide magnetic nanocomposites
  3. Effect of influent nitrogen concentration on feasibility of short-cut nitrification during wastewater treatment in activated sludge systems
  4. Assessment of Urtica as a low-cost adsorbent for methylene blue removal: kinetic, equilibrium, and thermodynamic studies
  5. Electrode and electrodeless impedance measurement for determination of orange juices parameters
  6. Evaluation of oxidative stability of vegetable oils enriched with herb extracts by EPR spectroscopy
  7. Electrosynthesis of poly(p-phenylene) and poly(p-phenylene/pyrrole) films under controlled humidity
  8. Synthesis, characterisation, and electrical properties of novel nanostructured conducting poly(aniline-co-m-chloroaniline) with incorporated silver particles
  9. Heterocyclisation of substituted ylidenethiocarbonohydrazides using dimethyl acetylenedicarboxylate
  10. Newly synthesized indolizine derivatives – antimicrobial and antimutagenic properties
  11. Synthesis and insecticidal activity of anthranilic diamides with hydrazone substructure
  12. Effect of alkylated diphenylamine on thermal-oxidative degradation behavior of poly-α-olefin
  13. Novel pathways of interaction of maleic anhydride derivatives with phosphorus(III) compounds: synthesis and characterisation of N,N,N′,N′ -tetraethyl-2,3-diphenylbut-2-enediamide and 3-dihydrofuranylidene-4-phosphorylidene–oxolane-2,5,5′-trione
  14. Efficient method for the synthesis of polysubstituted 2,6-dicyanoanilines by one-pot three-component tandem reaction of malononitrile with α,β-unsaturated imines
Downloaded on 26.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0097/pdf
Scroll to top button