Home Newly synthesized indolizine derivatives – antimicrobial and antimutagenic properties
Article
Licensed
Unlicensed Requires Authentication

Newly synthesized indolizine derivatives – antimicrobial and antimutagenic properties

  • Petra Olejníková EMAIL logo , Lucia Birošová , Ľubomír Švorc , Zuzana Vihonská , Martina Fiedlerová , Štefan Marchalín and Peter Šafář
Published/Copyright: March 27, 2015
Become an author with De Gruyter Brill

Abstract

A series of indolizine derivatives have been synthesized and subjected to antibacterial screening studies. Antibacterial activity of 21 derivatives was investigated against Staphylococcus aureus, Mycobacterium smegmatis, Salmonella typhimurium and Escherichia coli; also, the sensitivity of model yeast Candida parapsilosis and some model filamentous fungi Aspergillus fumigatus, Alternaria alternata, Botrytis cinerea and Microsporum gypseum was tested. Newly synthesized indolizine derivatives have shown selective toxicity to Gram-positive bacteria S. aureus and were also considered to be able to inhibit the acidoresistant rod M. smegmatis. Derivative XXI has shown the highest inhibition effect with the bacteriostatic effect on the cells at the concentration of 25 μg mL−1. The best antifungal activity has been detected in the presence of derivative XIII. Derivative XIII did also affect the morphology of hyphal tips of B. cinerea, which led to enhanced ramification of hyphae. Finally, the antimutagenic activity of derivatives was investigated. Significant antimutagenic activity was registered in case of derivative VIII. The number of induced revertants by mutagen [2-(5-nitrofuryl)acrylic acid] was decreased almost to the level of spontaneous revertants in the lowest applied concentration (50 μg per plate).

References

Brandi, A., Cicchi, S., Cordero, F. M., Frignoli, R., Goti, A., Picasso, S., & Vogel, P. (1995). Assignment of the absolute configuration of natural lentiginosine by synthesis and enzymic assays of optically pure (+) and (-)- enantiomers. Journal of Organic Chemistry, 60, 6806-6812. DOI: 10.1021/jo00126a033.10.1021/jo00126a033Search in Google Scholar

Clinical Laboratory Standard Institute (2014). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard-Eight edition, CLSI M7- A9. Wayne, PA, USA: Clinical Laboratory Standard Institute.Search in Google Scholar

Couture, A., Deniau, E., Grandclaudon, P., Lebrun, S., Leonce, S., Renard, P., & Pfeiffer, B. (2000). First synthesis and pharmacological evaluation of benzoindolizidine and benzoquinolizidine analogues of α-and β-peltatin. Bioorganic & Medicinal Chemistry, 8, 2113-2125. DOI: 10.1016/s0968-0896(00)00130-9.10.1016/S0968-0896(00)00130-9Search in Google Scholar

Darwish, E. S. (2008). Facile synthesis of heterocycles via 2- picolinium bromide and antimicrobial activities of the products. Molecules, 13, 1066-1078. DOI: 10.3390/molecules130 51066.Search in Google Scholar

Dudova, B., Hudecova, D., Pokorny, R., Mičkova, M., Palicova, M., Segľa, P., & Melnik, M. (2002). Copper complexes with bioactive ligands. Part II - Antifungal activity. Folia Microbiologica, 47, 225-229. DOI: 10.1007/bf02817642.10.1007/BF02817642Search in Google Scholar PubMed

Foster, C., Ritchie, M., Selwood, D. L., & Snowden, W. (1995). Synthesis and anti-herpes activity of a series of indolizines. Antiviral Chemistry & Chemotherapy, 6, 289-297.10.1177/095632029500600502Search in Google Scholar

Gubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P., & Chatelain, P. (1992). A novel class of calcium-entry blockers: the 1 [[4-(aminoalkoxy)- phenyl]sulfonyl]indolizines. Journal of Medicinal Chemistry, 35, 981-988. DOI: 10.1021/jm00084a002.10.1021/jm00084a002Search in Google Scholar PubMed

Gundersen, L. L., Negussie, A. H., Rise, F., & Ostby, O. B. (2003). Antimycobacterial activity of 1-substituted indolizines. Archiv der Pharmazie, 336, 191-195. DOI: 10.1002/ ardp.200390019.10.1002/ardp.200390019Search in Google Scholar PubMed

Gundersen, L. L., Charnock, C., Negussie, A. H., Rise, F., & Teklu, S. (2007). Synthesis of indolizine derivatives with selective antibacterial activity against Mycobacterium tuberculosis. European Journal of Pharmaceutical Sciences, 30, 26-35. DOI: 10.1016/j.ejps.2006.09.006.10.1016/j.ejps.2006.09.006Search in Google Scholar PubMed

Gupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D., & Kumaran, S. (2003). A quantitative structure-activity relationship study on a novel class of calcium-entry blockers: 1-[{4-(aminoalkoxy) phenyl}sulphonyl]indolizines. European Journal of Medicinal Chemistry, 38, 867-873. DOI: 10.1016/j.ejmech.2003.08.001.10.1016/j.ejmech.2003.08.001Search in Google Scholar PubMed

Hazra, A., Mondal, S., Maity, A., Naskar, S., Saha, P., Paira, R., Sahu, K. B., Paira, P., Ghosh, S., Sinha, C., Samanta, A., Banerjee, S., & Mondal, N. B. (2011). Amberlite- IRA-402 (OH) ion exchange resin mediated synthesis of indolizines, pyrrolo[1,2-a]quinolines and isoquinolines: Antibacterial and antifungal evaluation of the products. European Journal of Medicinal Chemistry, 46, 2132-2140. DOI: 10.1016/j.ejmech.2011.02.066.10.1016/j.ejmech.2011.02.066Search in Google Scholar PubMed

Hema, R., Parthasarathi, V., Sarkunam, K., Nallu, M., & Linden, A. (2003). 3-(4-Chlorobenzoyl)-7-(N, N-dimethylamino)-1-phenylindolizine and 3-(2,4-dichlorobenzoyl)-7-(N,N-dimethylamino)-1-phenylindolizine. Acta Crystallographica Section C: Crystal Structure Communications, 59, o703- o705. DOI: 10.1107/s0108270103023540.10.1107/S0108270103023540Search in Google Scholar PubMed

Hempel, A., Camerman, N., Mastropaolo, D., & Camerman, A. (1993). Glucosidase inhibitors: structures of deoxynojirimycin and castanospermine. Journal of Medicinal Chemistry, 36, 4082-4086. DOI: 10.1021/jm00077a012.10.1021/jm00077a012Search in Google Scholar

Hudecova, D., Varečka, Ľ., Vollek, V., & Betina, V. (1994). Growth and morphogenesis of Botrytis cinerea. Effects of exogenous calcium ions, calcium channel blockers and cyclosporin A. Folia Microbiologica, 39, 269-275. DOI: 10.1007/bf02814311.10.1007/BF02814311Search in Google Scholar

Jorgensen, A. S., Jacobsen, P., Christiansen, L. B., Bury, P. S., Kanstrup, A., Thorpe, S. M., Bain, S., Naerum, L., &Wassermann, K. (2000). Synthesis and pharmacology of a novel pyrrolo [2,1,5-cd] indolizine (NNC 45-0095), a high affinity non-steroidal agonist for the estrogen receptor. Bioorganic & Medicinal Chemistry Letters, 10, 399-402. DOI: 10.1016/s0960-894x(00)00015-9.10.1016/S0960-894X(00)00015-9Search in Google Scholar

Koul, A., Choidas, A., Treder, M., Tyagi, A. K., Drlica, K., Singh, Y., & Ullrich, A. (2000). Cloning and characterization of secretory tyrosine fosfatases of Mycobacterium tuberculosis. Journal of Bacteriology, 182, 5425-5432. DOI: 10.1128/jb.182.19.5425-5432.2000.10.1128/JB.182.19.5425-5432.2000Search in Google Scholar

Kubo, A., Nakai, T., Koizumi, Y., Kitahara, Y., Saito, N., Mikami, Y., Yazava, K., & Uno, J. (1996). A Synthesis of the derivatives of 1,2,3,5,10,10a-hexahydrobenz[f]indoline-6,9-dione having antifungal activity as a simple model of Saframycin A. Heterocycles, 42, 195-211. DOI: 10.3987/com-94-S5-1.10.3987/COM-94-S5-1Search in Google Scholar

Marchalin, S., Decroix, B., & Morel, J. (1993). Synthesis of indolizine-6,9-diones annelated to a thiophene ring. Acta Chemica Scandinavica, 47, 287-291. DOI: 10.3891/acta. chem.scand.47-0287.Search in Google Scholar

Marchalin, S., Szemes, F., Bar, N., & Decroix, B. (1999). Synthesis of enantiopure (S)-thieno[f]indolizidines. Heterocycles, 50, 445-452. DOI: 10.3987/com-98-s(h)10.10.3987/COM-98-S(H)10Search in Google Scholar

Maron, D. M., & Ames, B. N. (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research, 113, 173-215. DOI: 10.1016/0165-1161(83)90010-9.10.1016/0165-1161(83)90010-9Search in Google Scholar

Mitsumori, T., Bendikov, M., Dautel, O., Wudl, F., Shioya, T., Sato, H., & Sato, Y. (2004). Synthesis and properties of highly fluorescent indolizino [3,4,5-ab] isoindoles. Journal of the American Chemical Society, 126, 16793-16803. DOI: 10.1021/ja049214x.10.1021/ja049214xSearch in Google Scholar

Nasir, A. I., Gundersen, L. L., Rise, F., Antonsen, O., Kristensen, T., Langhelle, B., Bast, A., Custers, I., Haenen, G. R. M. M., & Wikstr¨om, H. (1998). Inhibition of lipid peroxidation mediated by indolizines. Bioorganic & Medicinal Chemistry Letters, 8, 1829-1832. DOI: 10.1016/s0960-894x(98)00313-8.10.1016/S0960-894X(98)00313-8Search in Google Scholar

Olejnikova, P., Kurucova, M., Švorc, Ľ., & Marchalin, Š. (2013). Induction of resistance in Mycobacterium smegmatis. Canadian Journal of Microbiology, 59, 126-129. DOI: 10.1139/cjm-2012-0438.10.1139/cjm-2012-0438Search in Google Scholar PubMed

Pearson, W. H., & Guo, L. (2001). Synthesis and mannosidase inhibitory activity of 3-benzyloxymethyl analogs of swainsonine. Tetrahedron Letters, 42, 8267-8271. DOI: 10.1016/s0040-4039(01)01777-4.10.1016/S0040-4039(01)01777-4Search in Google Scholar

Šáfař, P., Žužiová, J., Bobošiková, M., Marchalin, Š., Prόnayová, N., Comesse, S., & Daïch, A. (2009a). Synthesis and reductive desulfurization of chiral non-racemic benzothienoindolizines. An efficient approach to a novel bioactive tylophorine alkaloid analogue and 6-phenylindolizidine. Tetrahedron: Asymmetry, 20, 2137-2144. DOI: 10.1016/j.tetasy. 2009.08.010.Search in Google Scholar

Šafář, P., Žužiová, J., Marchalin, Š., Tόthová, E., Prόnayová, N., Švorc, Ľ., Vrábel, V., & Daïch, A. (2009b). Highly diastereoselective approach to novel phenylindolizidinols via benzothieno analogues of tylophorine based on reductive desulfurization of benzo[b] thiophene. Tetrahedron: Asymmetry, 20, 626-634. DOI: 10.1016/j.tetasy.2009.02.042.10.1016/j.tetasy.2009.02.042Search in Google Scholar

Sonnenschein, H., Hennrich, G., Resch-Genger, U., & Schulz, B. (2000). Fluorescence and UV/Vis spectroscopic behavior of novel biindolizines. Dyes and Pigments, 46, 23-27. DOI: 10.1016/s0143-7208(00)00032-2.10.1016/S0143-7208(00)00032-2Search in Google Scholar

Teklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E., & Rise, F. (2005). Indolizine 1-sulfonates as potent inhibitors of 15-lipoxygenase from soybeans. Bioorganic & Medicinal Chemistry, 13, 3127-3139. DOI: 10.1016/j.bmc.2005.02.056.10.1016/j.bmc.2005.02.056Search in Google Scholar PubMed

Toyota, M., Komori, C., & Ihara, M. (2000). A concise formal total synthesis of mappicine and nothapodytine B via an intramolecular hetero Diels-Alder reaction. Journal of Organic Chemistry, 65, 7110-7113. DOI: 10.1021/jo000816i.10.1021/jo000816iSearch in Google Scholar PubMed

Vaught, J. L., Carson, J. R., Carmosin, R. J., Blum, P. S., Persico, F. J., Hageman, W. E., Shank, R. P., & Raffa, R. B. (1990). Antinociceptive action of McN-5195 in rodents: a structurally novel (indolizine) analgesic with a nonopioid mechanism of action. Journal of Pharmacology and Experimental Therapeutics, 255, 1-10.Search in Google Scholar

Vemula, V. R., Vurukonda, S., & Bairi, C. K. (2011). Indolizine derivatives: recent advances and potential pharmacological activities. International Journal of Pharmaceutical Sciences Review & Research, 11, 159-163.Search in Google Scholar

Vlahovici, A., Andrei, M., & Drută, I. (2002). A study of the dimethyl-3-benzoyl-5-(2′-pyridyl)-indolizine-1,2-dicarboxylate exciplexes with alcohols. Journal of Luminescence, 96, 279-285. DOI: 10.1016/s0022-2313(01)00226-5. Wavefunction (2006). Spartan’06 [computer software]. Irvine, CA, USA: Wavefunction.Search in Google Scholar

Weide, T., Arve, L., Prinz, H., Waldmann, H., & Kessler, H. (2006). Substituted indolizine-1-carbonitrile derivatives as phosphatase inhibitors. Bioorganic & Medical Chemistry Letters, 16, 59-63. DOI: 10.1016/j.bmcl.2005.09.051 10.1016/j.bmcl.2005.09.051Search in Google Scholar PubMed

Received: 2014-9-3
Revised: 2014-12-10
Accepted: 2014-12-12
Published Online: 2015-3-27
Published in Print: 2015-7-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Voltammetric determination of B1 and B6 vitamins using a pencil graphite electrode
  2. An electrochemical sensor for sensitive determination of nitrites based on Ag–Fe3O4–graphene oxide magnetic nanocomposites
  3. Effect of influent nitrogen concentration on feasibility of short-cut nitrification during wastewater treatment in activated sludge systems
  4. Assessment of Urtica as a low-cost adsorbent for methylene blue removal: kinetic, equilibrium, and thermodynamic studies
  5. Electrode and electrodeless impedance measurement for determination of orange juices parameters
  6. Evaluation of oxidative stability of vegetable oils enriched with herb extracts by EPR spectroscopy
  7. Electrosynthesis of poly(p-phenylene) and poly(p-phenylene/pyrrole) films under controlled humidity
  8. Synthesis, characterisation, and electrical properties of novel nanostructured conducting poly(aniline-co-m-chloroaniline) with incorporated silver particles
  9. Heterocyclisation of substituted ylidenethiocarbonohydrazides using dimethyl acetylenedicarboxylate
  10. Newly synthesized indolizine derivatives – antimicrobial and antimutagenic properties
  11. Synthesis and insecticidal activity of anthranilic diamides with hydrazone substructure
  12. Effect of alkylated diphenylamine on thermal-oxidative degradation behavior of poly-α-olefin
  13. Novel pathways of interaction of maleic anhydride derivatives with phosphorus(III) compounds: synthesis and characterisation of N,N,N′,N′ -tetraethyl-2,3-diphenylbut-2-enediamide and 3-dihydrofuranylidene-4-phosphorylidene–oxolane-2,5,5′-trione
  14. Efficient method for the synthesis of polysubstituted 2,6-dicyanoanilines by one-pot three-component tandem reaction of malononitrile with α,β-unsaturated imines
Downloaded on 26.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0093/pdf
Scroll to top button