Startseite Ascorbic acid amperometric sensor using a graphene-wrapped hierarchical TiO2 nanocomposite
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ascorbic acid amperometric sensor using a graphene-wrapped hierarchical TiO2 nanocomposite

  • Li Fu EMAIL logo , Yu-Hong Zheng und Zhu-Xian Fu
Veröffentlicht/Copyright: 3. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An ascorbic acid (AA) amperometric sensor was fabricated based on a glassy carbon electrode (GCE) modified with a reduced graphene oxide-wrapped hierarchical TiO2 (RGO-TiO2) nanocomposite. The RGO-TiO2 nanocomposite was synthesized via the facial wet chemical method and characterized by scanning electron microscopy and X-ray diffraction. Cyclic voltammetry and amperometric techniques were employed to investigate its electrocatalytic performance towards the AA oxidation. The combined advantages of RGO and TiO2 provide the electrode with higher current response and lower oxidation potential compared with those of bare GCE and TiO2 modified GCE. The proposed electrode can be used for the determination of AA in the wide concentration range from 1 to 1500 μM with the detection limit of 0.5 μM. The proposed electrode was successfully used to determine AA in vitamin C tablets and spiked fruit juice.

References

Ambrosi, A., Morrin, A., Smyth, M. R., & Killard, A. J. (2008). The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid. Analytica Chimica Acta, 609, 37-43. DOI: 10.1016/j.aca.2007.12.017.10.1016/j.aca.2007.12.017Suche in Google Scholar

Gupta, V. K., Jain, A. K., & Shoora, S. K. (2013). Multiwall carbon nanotube modified glassy carbon electrode as voltammetric sensor for the simultaneous determination of ascorbic acid and caffeine. Electrochimica Acta, 93, 248-253. DOI: 10.1016/j.electacta.2013.01.065.10.1016/j.electacta.2013.01.065Suche in Google Scholar

Hoffer, L. J., Levine, M., Assouline, S., Melnychuk, D., Padayatty, S. J., Rosadiuk, K., Rousseau, C., Robitaille, L., & Miller,W. H. (2008). Phase I clinical trial of i.v. ascorbic acid in advanced malignancy. Annals of Oncology, 19, 1969-1974. DOI: 10.1093/annonc/mdn377.10.1093/annonc/mdn377Suche in Google Scholar

Hu, G. Z., Guo, Y., Xue, Q. M., & Shao, S. J. (2010). A highly selective amperometric sensor for ascorbic acid based on mesopore-rich active carbon-modified pyrolytic graphite electrode. Electrochimica Acta, 55, 2799-2804. DOI: 10.1016/j.electacta.2009.12.050.10.1016/j.electacta.2009.12.050Suche in Google Scholar

Khan, A., Khan, M. I., Iqbal, Z., Shah, Y., Ahmad, L., Nazir, S., Watson, D. G., Khan, J. A., Nasir, F., Khan, A., & Ismail (2011). A new HPLC method for the simultaneous determination of ascorbic acid and aminothiols in human plasma and erythrocytes using electrochemical detection. Talanta, 84, 789-801. DOI: 10.1016/j.talanta.2011.02.019.10.1016/j.talanta.2011.02.019Suche in Google Scholar

Kumar, S. A., Cheng, H.W., & Chen, S. M. (2009). Electroanalysis of ascorbic acid (vitamin C) using nano-ZnO/poly(luminol) hybrid film modified electrode. Reactive and Functional Polymers, 69, 364-370. DOI: 10.1016/j.reactfunctpolym 2009.03.001.Suche in Google Scholar

Laviron, E. (1974). Adsorption, autoinhibition and autocatalysis in polarography and linear potential sweep voltammetry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 52, 355-393. DOI: 10.1016/s0022-0728(74)80448-1.10.1016/S0022-0728(74)80448-1Suche in Google Scholar

Laviron, E. (1979). General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 101, 19-28. DOI: 10.1016/s0022-0728(79)80075-3.10.1016/S0022-0728(79)80075-3Suche in Google Scholar

Liang, Z. Q., Duan, A. P., Li, X. X., Liu, F. Z., Liu, L., Wang, K. M., & Liu, X. J. (2014). Determination of transcription nuclear factor-kappa B using an electrochemical, DNAbased nanoswitch. Analytical Letters, 47, 2691-2698. DOI: 10.1080/00032719.2014.921821.10.1080/00032719.2014.921821Suche in Google Scholar

Liu, X., Li, X., Xiong, Y., Huang, Q. M., Li, X. Y., Dong, Y. L., Liu, P., & Zhang, C. C. (2013). A glassy carbon electrode modified with the nickel(II)-bis(1,10-phenanthroline) complex and multi-walled carbon nanotubes, and its use as a sensor for ascorbic acid. Microchimica Acta, 180, 1309-1316. DOI: 10.1007/s00604-013-1058-8.10.1007/s00604-013-1058-8Suche in Google Scholar

Lui, G., Liao, J. Y., Duan, A. S., Zhang, Z. S., Fowler, M., & Yu, A. P. (2013). Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance. Journal of Materials Chemistry A, 39, 12255-12262. DOI: 10.1039/c3ta12329d.10.1039/c3ta12329dSuche in Google Scholar

Ma, Q., & Nakazato, K. (2014). Low-temperature fabrication of ZnO nanorods/ferrocenyl-alkanethiol bilayer electrode and its application for enzymatic glucose detection. Biosensors and Bioelectronics, 51, 362-365. DOI: 10.1016/j.bios.2013.08.004.10.1016/j.bios.2013.08.004Suche in Google Scholar

McGregor, G. P., & Biesalski, H. K. (2006). Rationale and impact of vitamin C in clinical nutrition. Current Opinion in Clinical Nutrition and Metabolic Care, 9, 697-703. DOI: 10.1097/01.mco.0000247478.79779.8f.10.1097/01.mco.0000247478.79779.8fSuche in Google Scholar

Nalini, B., & Narayanan, S. S. (2000). Amperometric determination of ascorbic acid based on electrocatalytic oxidation using a ruthenium(III) diphenyldithiocarbamate-modified carbon paste electrode. Analytica Chimica Acta, 405, 93-97. DOI: 10.1016/s0003-2670(99)00689-3.10.1016/S0003-2670(99)00689-3Suche in Google Scholar

Ngai, K. S., Tan, W. T., Zainal, Z., Zawawi, R. M., & Zidan, M. (2013). Voltammetry detection of ascorbic acid at glassy carbon electrode modified by single-walled carbon nanotube/zinc oxide. International Journal of Electrochemical Science, 8, 10557-10567.Suche in Google Scholar

Palanisamy, S., Chen, S. M., & Sarawathi, R. (2012). A novel nonenzymatic hydrogen peroxide sensor based on reduced graphene oxide/ZnO composite modified electrode. Sensors and Actuators B: Chemical, 166-167, 372-377. DOI: 10.1016/j.snb.2012.02.075.10.1016/j.snb.2012.02.075Suche in Google Scholar

Pisoschi, A. M., Danet, A. F., & Kalinowski, S. (2008). Ascorbic acid determination in commercial fruit juice samples by cyclic voltammetry. Journal of Automated Methods and Management in Chemistry, 2008, 937651. DOI: 10.1155/2008/937651.10.1155/2008/937651Suche in Google Scholar PubMed PubMed Central

Reddy, S., Kumara Swamy, B. E., Vasan, H. N., & Jayadevappa, H. (2012). ZnO and ZnO/polyglycine modified carbon paste electrode for electrochemical investigation of dopamine. Analytical Methods, 4, 2778-2783. DOI: 10.1039/c2ay25203a.10.1039/c2ay25203aSuche in Google Scholar

Shi, W. T., Liu, C. X., Song, Y. L., Lin, N. S., Zhou, S., & Cai, X. X. (2012). An ascorbic acid amperometric sensor using over-oxidized polypyrrole and palladium nanoparticles composites. Biosensors and Bioelectronics, 38, 100-106. DOI: 10.1016/j.bios.2012.05.004.10.1016/j.bios.2012.05.004Suche in Google Scholar PubMed

Sulyok, M., Berthiller, F., Krska, R., & Schuhmacher, R. (2006). Development and validation of a liquid chromatography/ tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Communications in Mass Spectrometry, 20, 2649-2659. DOI: 10.1002/rcm.2640.10.1002/rcm.2640Suche in Google Scholar PubMed

Tsierkezos, N. G., Ritter, U., Wetzold, N., & Hübler, A. C. (2014). Disposable multiwalled carbon nanotube printed film electrochemical determination of acetaminophen, dopamine and uric acid. Analytical Letters, 47, 2829-2843. DOI: 10.1080/00032719.2014.926553.10.1080/00032719.2014.926553Suche in Google Scholar

Wang, A. W., Ng, H. P., Xu, Y., Li, Y. Y., Zheng, Y. H., Yu, J. P., Peng, F. G., & Fu, L. (2014). Gold nanoparticles: Synthesis, stability test and application for the rice growth. Journal of Nanomateriaals, 2014, 451232. DOI: 10.1155/2014/451232.10.1155/2014/451232Suche in Google Scholar

Wu, G. H., Wu, Y. F., Liu, X. W., Rong, M. C., Chen, X. M., & Chen, X. (2012). An electrochemical ascorbic acid sensor based on palladium nanoparticles supported on graphene oxide. Analytica Chimica Acta, 745, 33-37. DOI: 10.1016/j.aca.2012.07.034.10.1016/j.aca.2012.07.034Suche in Google Scholar PubMed

Yang, S. L., Li, G., Yin, Y. L., Yang, R., Li, J. J., & Qu, L. B. (2013). Nano-sized copper oxide/multi-wall carbon nanotube/ Nafion modified electrode for sensitive detection of dopamine. Journal of Electroanalytical Chemistry, 703, 45-51. DOI: 10.1016/j.jelechem.2013.04.020.10.1016/j.jelechem.2013.04.020Suche in Google Scholar

Zeng, W. M., Martinuzzi, F., & MacGregor, A. (2005). Development and application of a novel UV method for the analysis of ascorbic acid. Journal of Pharmaceutical and Biomedical Analysis, 36, 1107-1111. DOI: 10.1016/j.jpba.2004.09.002 10.1016/j.jpba.2004.09.002Suche in Google Scholar PubMed

Received: 2014-9-9
Revised: 2014-10-9
Accepted: 2014-10-18
Published Online: 2015-3-3
Published in Print: 2015-5-1

© 2015

Artikel in diesem Heft

  1. Perovskite ceramics and recent experimental progress in reactor design for chemical looping combustion application
  2. Total reflection X-ray fluorescence analysis of fly ash from Bulgarian coal-fired power plants
  3. Ascorbic acid amperometric sensor using a graphene-wrapped hierarchical TiO2 nanocomposite
  4. Rapid determination of products of phenol hydrogenation in a supercritical water system using headspace gas chromatography
  5. Swelling of N-vinylcaprolactam–dodecyl methacrylate gel in {heptane + toluene} mixtures
  6. Extraction of Cu(II) with Acorga M5640 using hollow fibre liquid membrane
  7. Heat transfer in a jacketed agitated vessel equipped with multistage impellers
  8. Seasonal variation in alkaloid composition and antiproliferative activity of Stylophorum lasiocarpum (Oliv.) Fedde
  9. A polyacrylate prepared using polyurethane surfactants: properties of emulsion and film
  10. Efficient synthesis of glutaric acid from L-glutamic acid via diazoniation/hydrogenation sequence
  11. New insights into bromination process: effective preparation of Ambroxol
  12. A concise route to 4-aminomethylpyrazoles and 4-aminomethylisoxazoles from acetylacetone-derived hexahydropyrimidines under mild conditions
  13. Assessment of non-standard reaction conditions for asymmetric 1,3-dipolar organocatalytic cycloaddition of nitrone with α,β-unsaturated aldehydes
  14. β-Cyclodextrin as water-solubility enhancer for butylated hydroxytoluene
  15. Asymmetric polymerisation of substituted phenylacetylene using chiral Rh(2,5-norbornadiene)(L-proline) catalyst
Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0079/html
Button zum nach oben scrollen