Home New insights into bromination process: effective preparation of Ambroxol
Article
Licensed
Unlicensed Requires Authentication

New insights into bromination process: effective preparation of Ambroxol

  • Jun-Hui Xu , Yan-Qiong Ma , Jian-Ping Wei , Fang-Mei Li and Xin-Hua Peng EMAIL logo
Published/Copyright: March 3, 2015
Become an author with De Gruyter Brill

Abstract

Ambroxol used as an expectorant in treating respiratory diseases was effectively prepared with a total yield of 62 %, with o-toluidine as the feedstock via successive procedures of electrophilic bromination, acetylation, radical benzylic bromination, N-alkylation and hydrolysis processes. The addition of aqueous hydrogen peroxide could enhance the utilisation of liquid bromine in the electrophilic bromination of o-toluidine, avoiding the hazardous HBr generated as a by-product. In addition, liquid bromine promoted by MnO2 was used efficiently for the radical benzylic bromination of N-acetyl-N-(2,4-dibromo-6-methylphenyl)acetamide under mild conditions.

References

Adimurthy, S., Ramachandraiah, G., Bedekar, A. V., Ghosh, S., Ranu, B. C., & Ghosh, P. K. (2006). Eco-friendly and versatile brominating reagent prepared from a liquid bromine precursor. Green Chemistry, 8, 916-922. DOI: 10.1039/b606586d.10.1039/b606586dSearch in Google Scholar

Adimurthy, S., Ghosh, S., Patoliya, P. U., Ramachandraiah, G., Agrawal, M., Gandhi, M. R., Upadhyay, S. C., Ghosh, P. K., & Ranu, B. C. (2008). An alternative method for the regioand stereoselective bromination of alkenes, alkynes, toluene derivatives and ketones using a bromide/bromate couple. Green Chemistry, 10, 232-237. DOI: 10.1039/b713829f.10.1039/B713829FSearch in Google Scholar

Bagmanov, B. T. (2009). Effect of structural factors and solvent nature in bromination of anilines. Russian Journal of Applied Chemistry, 82, 1570-1576. DOI: 10.1134/s1070427209090 122.Search in Google Scholar

Beeh, K. M., Beier, J., Esperester, A., & Paul, L. D. (2008). Antiinflammatory properties of ambroxol. European Journal of Medical Research, 13, 557-562.Search in Google Scholar

Djerassi, C. (1948). Brominations with N-bromosuccinimide and related compounds. The Wohl-Ziegler reaction. Chemical Reviews, 43, 271-317. DOI: 10.1021/cr60135a004.10.1021/cr60135a004Search in Google Scholar PubMed

Eissen, M., & Lenoir, D. (2008). Electrophilic bromination of alkenes: Environmental, health and safety aspects of new alternative methods. Chemistry - A European Journal, 14, 9830-9841. DOI: 10.1002/chem.200800462.10.1002/chem.200800462Search in Google Scholar PubMed

Firouzabadi, H., Iranpoor, N., Kazemi, S., Ghaderi, A., & Garzan, A. (2009). Highly efficient halogenation of organic compounds with halides catalyzed by cerium(III) chloride heptahydrate using hydrogen peroxide as the terminal oxidant in water. Advanced Synthesis & Catalysis, 351, 1925-1932. DOI: 10.1002/adsc.200900124.10.1002/adsc.200900124Search in Google Scholar

Galloni, P., Mancini, M., Floris, B., & Conte, V. (2013). A sustainable two-phase procedure for V-catalyzed toluene oxidative bromination with H2O2-KBr. Dalton Transactions, 42, 11963-11970. DOI: 10.1039/c3dt50907a.10.1039/c3dt50907aSearch in Google Scholar PubMed

Greene, T. W., & Wuts, P. G. M. (1999). Protective groups in organic synthesis. (3rd. ed., pp. 604-607, 744-74). New York, NY, USA: Wiley.10.1002/0471220574Search in Google Scholar

Jiang, X. F., Shen, M. H., Tang, Y., & Li, C. Z. (2005). Chemoselective monobromination of alkanes promoted by unactivated MnO2. Tetrahedron Letter, 46, 487-489. DOI: 10.1016/j.tetlet.2004.11.113.10.1016/j.tetlet.2004.11.113Search in Google Scholar

Joshi, G., & Adimurthy, S. (2011). Environment-friendly bromination of aromatic heterocycles using a bromide-bromate couple in an aqueous medium. Industral & Engineering Chemistry Research, 50, 12271-12275. DOI: 10.1021/ie2004 863.Search in Google Scholar

Kikuchi, D., Sakaguchi, S., & Ishii, Y. (1998). An alternative method for the selective bromination of alkylbenzenes using NaBrO3/NaHSO3 reagent. Journal of Organic Chemistry, 63, 6023-6026. DOI: 10.1021/jo972263q.10.1021/jo972263qSearch in Google Scholar PubMed

Krishnaveni, N. S., Surendra, K., & Rama, R. K. (2004). A simple and highly selective biomimetic oxidation of alcohols and epoxides with N-bromosuccinimide in the presence of β- cyclodextrin in water. Advanced Synthesis & Catalysis, 346, 346-350. DOI: 10.1002/adsc.200303164.10.1002/adsc.200303164Search in Google Scholar

Larsson, A. L. E., Gatti, R. G. P., & Bäckvall, J. E. (1997). Synthesis of chiral and achiral analogues of ambroxol via palladium-catalysed reactions. Journal of the Chemical Society, Perkin Transactions 1, 1997, 2873-2877. DOI: 10.1039/a702141k.10.1039/a702141kSearch in Google Scholar

Latli, B., Hrapchak, M., Switek, H. K., Retz, D. M., Krishnamurthy, D., & Senanayake, C. H. (2010). Synthesis of labeled ambroxol and its major metabolites. Journal of Labelled Compounds and Radiopharmaceuticals, 53, 15-23. DOI: 10.1002/jlcr.1694.10.1002/jlcr.1694Search in Google Scholar

Liebenow, W., & Grafe, I. (1985). European patent No. EP0130224. Munich, Germany: European Patent office.Search in Google Scholar

Malerba, M., & Ragnoli, B. (2008). Ambroxol in the 21st century: pharmacological and clinical update. Expert Opinion on Drug Metabolism & Toxicology, 4, 1119-1129. DOI: 10.1517/17425255.4.8.1119.10.1517/17425255.4.8.1119Search in Google Scholar PubMed

Mayhoub, A. S., Talukdar, A., & Cushman, M. (2010). An oxidation of benzyl methyl ethers with NBS that selectively affords either aromatic aldehydes or aromatic methyl esters. Journal of Organic Chemistry, 75, 3507-3510. DOI: 10.1021/jo1004313.10.1021/jo1004313Search in Google Scholar PubMed PubMed Central

Olivieri, D., Zavattini, G., Tomasini, G., Daniotti, S., Bonsignore, G., Ferrara, G., Carnimeo, N., Chianese, R., Catena, E., Marcatili, S., Del Donno, M., Grassi, C., Pozzi, E., Grassi, V., Tantucci, C., Lucchesi, M., Schimid, G., Marchioni, C. F., Penitenti, S., Mistretta, A., Crimi, N., Casali, L., Cabiddu, R., Donner, C., Patessio, A., Massei, V., Sanguinetti, C. M., Orlandi, O., Bruna, S., Serra, C., & Giacopelli, A. (1987). Ambroxol for the prevention of chronic bronchitis exacerbations: long-term multicenter trial. Protective effect of ambroxol against winter semester exacerbations: a double-blind study versus placebo. Respiration, 51(S1), 42-51.10.1159/000195274Search in Google Scholar PubMed

Podgoršek, A., Stavber, S., Zupan, M., & Iskra, J. (2006). Free radical bromination by the H2O2-HBr system on water. Tetrahedron Letter, 47, 7245-7247. DOI: 10.1016/j. tetlet.2006.07.109.Search in Google Scholar

Podgoršek, A., Stavber, S., Zupan, M., & Iskra, J. (2007). Bromination of ketones with H2O2-HBr “on water”. Green Chemistry, 9, 1212-1218. DOI: 10.1039/b707065a.10.1039/b707065aSearch in Google Scholar

Podgoršek, A., Stavber, S., Zupan, M., & Iskra, J. (2009). Environmentally benign electrophilic and radical bromination “on water”: H2O2-HBr system versus N-bromosuccinimide. Tetrahedron, 65, 4429-4439. DOI: 10.1016/j.tet.2009.03.034.10.1016/j.tet.2009.03.034Search in Google Scholar

Ratz, I., Benko, P., Bozsing, D., Tungler, A., Mathe, T., Kovanyi, G., Petro, J., Sztruhar, I., & Vereczkey, G. (1991). G.B. Patent No. 2,239,241A. Newport, UK: Intellectual Property Office.Search in Google Scholar

Romeo, A. R., Pere, L. P., Victor, J. P., Josep, M., & Roig, R. (1986). E.S. Patent No. 8,602,601A1. Madrid, Spain: Spanish Patent and Trademark Office.Search in Google Scholar

Rothenberg, G., & Clark, J. H. (2000). Vanadium-catalysed oxidative bromination using dilute mineral acids and hydrogen peroxide: An option for recycling waste acid streams. Organic Process Research & Development, 4, 270-274. DOI: 10.1021/op000020l.10.1021/op000020lSearch in Google Scholar

Sels, B. F., De Vos, D. E., & Jacobs, P. A. (2001). Use of WO2− 4 on layered double hydroxides for mild oxidative bromination and bromide-assisted epoxidation with H2O2. Journal of the American Chemical Society, 123, 8350-8359. DOI: 10.1021/ja015930c.10.1021/ja015930cSearch in Google Scholar PubMed

Shaw, H., Perlmutter, H. D., & Gu, C. (1997). Free-radical bromination of selected organic compounds in water. Journal of Organic Chemistry, 62, 236-237. DOI: 10.1021/jo950371b.10.1021/jo950371bSearch in Google Scholar PubMed

Sheldon, R. A. (2005). Green solvents for sustainable organic synthesis: state of the art. Green Chemistry, 7, 267-278. DOI: 10.1039/b418069k.10.1039/b418069kSearch in Google Scholar

Wang, L.,Wang, S. S., VO-Thanh, G., & Liu, Y. (2013). The oxidative halogenations of arenes in water using hydrogen peroxide and halide salts over an ionic catalyst containing sulfo group and hexafluorotitanate. Journal of Molecular Catalysis A: Chemical, 371, 56-62. DOI: 10.1016/j.molcata.2013.01. 023.Search in Google Scholar

Weiser, T. (2008). Ambroxol: a CNS drug? CNS Neuroscience & Therapeutics, 14, 17-24. DOI: 10.1111/j.1527-3458.2007.00032.x.10.1111/j.1527-3458.2007.00032.xSearch in Google Scholar PubMed PubMed Central

Yonehara, K., Kamata, K., Yamaguchi, K., & Mizuno, N. (2011). An efficient H2O2-based oxidative bromination of alkenes, alkynes, and aromatics by a divanadium-substituted phosphotungstate. Chemical Communications, 47, 1692-1694. DOI: 10.1039/c0cc04889e.10.1039/c0cc04889eSearch in Google Scholar PubMed

Yu, S. H., Tian, S. X., He, W., & Yang, J. (1996). Synthesis for ambroxol hydrochloride. Chinese Journal of Pharmaceuticals, 27, 435-436.Search in Google Scholar

Zhang, Q., Gong, S. W., Liu, L. J., & Yin, H. D. (2013). An efficient and clean oxidative bromination reaction of phenol catalyzed by ammonium salt of heteropolyacids supported on silica. Process Safety and Environmental Protection, 91, 86-91. DOI: 10.1016/j.psep.2012.03.001. 10.1016/j.psep.2012.03.001Search in Google Scholar

Received: 2014-6-12
Revised: 2014-10-8
Accepted: 2014-10-8
Published Online: 2015-3-3
Published in Print: 2015-5-1

© 2015

Articles in the same Issue

  1. Perovskite ceramics and recent experimental progress in reactor design for chemical looping combustion application
  2. Total reflection X-ray fluorescence analysis of fly ash from Bulgarian coal-fired power plants
  3. Ascorbic acid amperometric sensor using a graphene-wrapped hierarchical TiO2 nanocomposite
  4. Rapid determination of products of phenol hydrogenation in a supercritical water system using headspace gas chromatography
  5. Swelling of N-vinylcaprolactam–dodecyl methacrylate gel in {heptane + toluene} mixtures
  6. Extraction of Cu(II) with Acorga M5640 using hollow fibre liquid membrane
  7. Heat transfer in a jacketed agitated vessel equipped with multistage impellers
  8. Seasonal variation in alkaloid composition and antiproliferative activity of Stylophorum lasiocarpum (Oliv.) Fedde
  9. A polyacrylate prepared using polyurethane surfactants: properties of emulsion and film
  10. Efficient synthesis of glutaric acid from L-glutamic acid via diazoniation/hydrogenation sequence
  11. New insights into bromination process: effective preparation of Ambroxol
  12. A concise route to 4-aminomethylpyrazoles and 4-aminomethylisoxazoles from acetylacetone-derived hexahydropyrimidines under mild conditions
  13. Assessment of non-standard reaction conditions for asymmetric 1,3-dipolar organocatalytic cycloaddition of nitrone with α,β-unsaturated aldehydes
  14. β-Cyclodextrin as water-solubility enhancer for butylated hydroxytoluene
  15. Asymmetric polymerisation of substituted phenylacetylene using chiral Rh(2,5-norbornadiene)(L-proline) catalyst
Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0077/html
Scroll to top button