Home A concise route to 4-aminomethylpyrazoles and 4-aminomethylisoxazoles from acetylacetone-derived hexahydropyrimidines under mild conditions
Article
Licensed
Unlicensed Requires Authentication

A concise route to 4-aminomethylpyrazoles and 4-aminomethylisoxazoles from acetylacetone-derived hexahydropyrimidines under mild conditions

  • Abdullah I. Saleh EMAIL logo , Kayed A. Abu-Safieh and Bader A. Salameh
Published/Copyright: March 3, 2015
Become an author with De Gruyter Brill

Abstract

Acetylacetone was successfully used as a precursor of 4-aminomethylpyrazoles and 4-aminomethylisoxazoles in a two step process at ambient temperature. In the first step, acetylacetone was transformed to the corresponding hexahydropyrimidines (1,3-diazinanes) via two consecutive one-pot Mannich aminomethylations. Hexahydropyrimidines were then treated with hydrazine, phenylhydrazine, and hydroxylamine, respectively, to obtain the corresponding 4-aminomethylpyrazoles and 4-aminomethylisoxazoles in good yields. The hexahydropyrimidine ring decomposed providing the title compounds and a reasonable mechanism has been proposed.

References

Bakharev, V. V., Peresedova, E. V., Krivolapov, D. B., Mironova, E. V., & Litvinov, I. A. (2009). Reactions of 1,3,5-triazinyl-nitroformaldoximes. 1. Interaction of 1,3,5- triazinylnitroformaldoximes with dicarbonyl compounds. Chemistry of Heterocyclic Compounds, 45, 587-594. DOI: 10.1007/s10593-009-0314-7.10.1007/s10593-009-0314-7Search in Google Scholar

Becker, A., Grecksch, G., Bernstein, H. G., Höllt, V. & Bogerts, B. (1999). Social behaviour in rats lesioned with ibotenic acid in the hippocampus: quantitative and qualitative analysis. Psychopharmacology, 144, 333-338. DOI: 10.1007/s002130051015.10.1007/s002130051015Search in Google Scholar PubMed

Brahmayya, M., Venkateswararao, B., Krishnarao, D., Durgarao, S., Prasad, U. V., Damodharam, T., & Mishra, R. (2013). Synthesis and fungicidal activity of novel 5-aryl-4- methyl-3yl (imidazolidin-1yl methyl, 2-ylidene nitro imine) isoxazoles. Journal of Pharmacy Research, 7, 516-519. DOI: 10.1016/j.jopr.2013.04.057.10.1016/j.jopr.2013.04.057Search in Google Scholar

Cocivera, M., Woo, K. W., & Livant, P. (1978). Flow nuclear magnetic resonance study of the addition, dehydration, and cyclization steps for reaction between hydrazine and ethyl acetoacetate. Canadian Journal of Chemistry, 56, 473-480. DOI: 10.1139/v78-076.10.1139/v78-076Search in Google Scholar

Feng, J., Ablajan, K., & Sali, A. (2014). 4-Dimethylaminopyridine- catalyzed multi-component one-pot reactions for the convenient synthesis of spiro[indoline-3,4′ -pyrano[2,3- c]pyrazole] derivatives. Tetrahedron, 70, 484-489. DOI: 10. 1016/j.tet.2013.11.019.10.1016/j.tet.2013.11.019Search in Google Scholar

Fong, T. M., & Heymsfield, S. B. (2009). Cannabinoid-1 receptor inverse agonists: current understanding of mechanism of action and unanswered questions. International Journal of Obesity, 33, 947-955. DOI: 10.1038/ijo.2009.132.10.1038/ijo.2009.132Search in Google Scholar PubMed

Frølund, B., Ebert, B., Kristiansen, U., Liljefors, T., & Krogsgaard-Larsen, P. (2002). GABA-A receptor ligands and their therapeutic potentials. Current Topics in Medicinal Chemistry, 2, 817-832. DOI: 10.2174/1568026023393525.10.2174/1568026023393525Search in Google Scholar PubMed

Gaikwad, N. D., Patil, S. V., & Bobade, V. D. (2013). Synthesis and antimicrobial activity of novel thiazole substituted pyrazole derivatives. Journal of Heterocyclic Chemistry, 50, 519-527. DOI: 10.1002/jhet.1513.10.1002/jhet.1513Search in Google Scholar

Gosselin, F., O’Shea, P. D., Webster, R. A., Reamer, R. A., Tillyer, R. D., & Grabowski, E. J. J. (2006). Highly regioselective synthesis of 1-aryl-3,4,5-substituted pyrazoles, Synlett, 2006, 3267-3270. DOI: 10.1055/s-2006-956487.10.1055/s-2006-956487Search in Google Scholar

Greenwood, D. (2008). Antimicrobial drugs: Chronicle of a twentieth century medical triumph (pp. 124). Oxford, UK: Oxford University Press.Search in Google Scholar

Heller, S. T., & Natarajan, S. R. (2006). 1,3-Diketones from acid chlorides and ketones: A rapid and general one-pot synthesis of pyrazoles. Organic Letters, 8, 2675-2678. DOI: 10.1021/ol060570p.10.1021/ol060570pSearch in Google Scholar PubMed

Jamwal, A., Javed, A., & Bhardwaj, V. (2013). A review on pyrazole derivatives of pharmacological potential. Journal of Pharmaceutical and BioSciences, 1, 114-123.Search in Google Scholar

Katritzky, A. R., Ostercamp, D. L., & Yousaf, T. I. (1987). The mechanisms of heterocyclic ring closures. Tetrahedron, 43, 5171-5186. DOI: 10.1016/s0040-4020(01)87693-6.10.1016/S0040-4020(01)87693-6Search in Google Scholar

Latypova, D. R., Badamshin, A. G., Lobov, A. N., & Dokichev, V. A. (2013). Reaction of ethyl acetoacetate with formaldehyde and primary amines. Russian Journal of Organic Chemistry, 49, 843-848. DOI: 10.1134/s1070428013060079.10.1134/S1070428013060079Search in Google Scholar

Moad, G., & Benkovic, S. J. (1978). On the mechanism of decomposition of geminal diamines. Journal of the American Chemical Society, 100, 5495-5499. DOI: 10.1021/ja00485a 038.Search in Google Scholar

Mukhopadhyay, C., Rana, S., & Butcher, R. J. (2011). FeCl3 catalysed two consecutive aminomethylation at the α- position of the β-dicarbonyl compounds: an easy access to hexahydropyrimidines and its spiro analogues. Tetrahedron Letters, 52, 4153-4157. DOI: 10.1016/j.tetlet.2011.05.144.10.1016/j.tetlet.2011.05.144Search in Google Scholar

Nasu, T., Tagawa, T., & Imafuku, K. (1998). Synthesis and reactions of 1,3-dicarbonyl-substituted troponoids: Conversion to tropolones having an isoxazole or a pyrazole ring. Journal of Heterocyclic Chemistry, 35, 389-396. DOI: 10.1002/jhet.5570350222.10.1002/jhet.5570350222Search in Google Scholar

Neochoritis, C. G., Stephanidou-Stephanatou, J., & Tsoleridis, C. A. (2011). One-pot regioselective double-Mannich annulations affording azabicyclononanones as a key step in the synthesis of natural products. European Journal of Organic Chemistry, 2011, 5336-5346. DOI: 10.1002/ejoc.201100700.10.1002/ejoc.201100700Search in Google Scholar

Nishida, S., Maruoka, H., Yoshimura, Y., Goto, T., Tomita, R., Masumoto, E., Okabe, F., Yamagata, K., & Fiyioka, T. (2012). Synthesis and biological activities of some new thiazolidine derivatives containing pyrazole ring system. Journal of Heterocyclic Chemistry, 49, 303-309. DOI: 10.1002/jhet.834.10.1002/jhet.834Search in Google Scholar

Saleh, A., Morton, M., & D’Angelo, J. (2014). Synthesis of 1,3-disubstituted hexahydropyrimidine derivatives from dibenzoylmethane, acetylacetone, ethyl acetoacetate: Onepot FeCl3-catalysed Mannich reaction. Synthetic Communications, 44, 2715-2723. DOI: 10.1080/00397911.2014.916302.10.1080/00397911.2014.916302Search in Google Scholar

Sechi, M., Sannia, L., Carta, F., Palomba, M., Dallocchio, R., Dessi, A., Derudas, M., Zawahir, Z., & Neamati, N. (2005). Design of novel bioisosteres of β-diketo acid inhibitors of HIV-1 integrase. Antiviral Chemistry & Chemotherapy, 16, 41-61.10.1177/095632020501600105Search in Google Scholar PubMed

Shehata, I., A. & Glennon, R. A. (1987). Mesoionic isoxazolo [2,3-a]pyrimidinediones and 1,3,4-oxadiazolo[3,2-α]pyrimidinediones as potential adenosine antagonists. Journal of Heterocyclic Chemistry, 24, 1291-1295. DOI: 10.1002/jhet.5570240511.10.1002/jhet.5570240511Search in Google Scholar

Talley, J. J., Brown, D. L., Carter, J. S., Graneto, M. J., Koboldt, C. M., Masferrer, J. L., Perkins, W. E., Rogers, R. S., Shaffer, A. F., Zhang, Y. Y., Zweifel, B. S., & Seibert, K. (2000). 4-[5-Methyl-3-phenylisoxazol-4-yl]- benzenesulfonamide, Valdecoxib: A potent and selective inhibitor of COX-2. Journal of Medicinal Chemistry, 43, 775-777. DOI: 10.1021/jm990577v.10.1021/jm990577vSearch in Google Scholar PubMed

Uno, H., Kurokawa, M., Masuda, Y., & Nishimura, H. (1979). Studies on 3-substituted 1,2-benzisoxazole derivatives. 6. Syntheses of 3-(sulfamoylmethyl)-1,2-benzisoxazole derivatives and their anticonvulsant activities. Journal of Medicinal Chemistry, 22, 180-183. DOI: 10.1021/jm00188a011.10.1021/jm00188a011Search in Google Scholar PubMed

Wagner, E., Becan, L., & Nowakowska, E. (2004). Synthesis and pharmacological assessment of derivatives of isoxazolo[4,5- d]pyrimidine. Bioorganic & Medicinal Chemistry, 12, 265-272. DOI: 10.1016/j.bmc.2003.10.004.10.1016/j.bmc.2003.10.004Search in Google Scholar PubMed

WHO (2013). WHO model list of essential medicines. Geneva, Switzerland: World Health Organization. Retrieved August 17, 2014, from http://www.who.int/medicines/publications/essentialmedicines/en/ Search in Google Scholar

Received: 2014-5-24
Revised: 2014-10-17
Accepted: 2014-10-31
Published Online: 2015-3-3
Published in Print: 2015-5-1

© 2015

Articles in the same Issue

  1. Perovskite ceramics and recent experimental progress in reactor design for chemical looping combustion application
  2. Total reflection X-ray fluorescence analysis of fly ash from Bulgarian coal-fired power plants
  3. Ascorbic acid amperometric sensor using a graphene-wrapped hierarchical TiO2 nanocomposite
  4. Rapid determination of products of phenol hydrogenation in a supercritical water system using headspace gas chromatography
  5. Swelling of N-vinylcaprolactam–dodecyl methacrylate gel in {heptane + toluene} mixtures
  6. Extraction of Cu(II) with Acorga M5640 using hollow fibre liquid membrane
  7. Heat transfer in a jacketed agitated vessel equipped with multistage impellers
  8. Seasonal variation in alkaloid composition and antiproliferative activity of Stylophorum lasiocarpum (Oliv.) Fedde
  9. A polyacrylate prepared using polyurethane surfactants: properties of emulsion and film
  10. Efficient synthesis of glutaric acid from L-glutamic acid via diazoniation/hydrogenation sequence
  11. New insights into bromination process: effective preparation of Ambroxol
  12. A concise route to 4-aminomethylpyrazoles and 4-aminomethylisoxazoles from acetylacetone-derived hexahydropyrimidines under mild conditions
  13. Assessment of non-standard reaction conditions for asymmetric 1,3-dipolar organocatalytic cycloaddition of nitrone with α,β-unsaturated aldehydes
  14. β-Cyclodextrin as water-solubility enhancer for butylated hydroxytoluene
  15. Asymmetric polymerisation of substituted phenylacetylene using chiral Rh(2,5-norbornadiene)(L-proline) catalyst
Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0018/html
Scroll to top button