Startseite β-Cyclodextrin as water-solubility enhancer for butylated hydroxytoluene
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

β-Cyclodextrin as water-solubility enhancer for butylated hydroxytoluene

  • Marcin Lukasiewicz EMAIL logo , Stanislaw Kowalski , Anna Ptaszek und Pawel Ptaszek
Veröffentlicht/Copyright: 3. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The phenomenon of the increase in solubility of the non-polar phenolic antioxidant - butylated hydroxytoluene (BHT) - in aqueous solutions containing β-cyclodextrin (CD) was studied. The complexation of BHT by CD was investigated using a phase solubility study. This method makes it possible to calculate the apparent formation constant for the host-guest complex. In addition, the thermodynamic properties were evaluated, revealing a spontaneous endothermic process of complex formation. Two solubility models were also used to verify their applicability to predicting the BHT concentration in solution. Those models included the modified Apelblat and Buchowski-Ksiazczak equations. In order to investigate the antioxidant properties of the BHT/CD/water ternary systems, a radical scavenging activity using a DPPH stable radical was performed. The experiments indicated that the antioxidant activity is temperature- and CD concentration-dependent. It was shown that complexation may inhibit the radical scavenging by BHT or change the scavenging stoichiometry.

References

Agrawal, M., Kim, Y. T., Tonelli, A., & Whang, H. S. (2010). Cyclodextrin inclusion complex formation with butylated hydroxytoluene and its application in polyethylene film.Journal of Applied Polymer Science, 118, 1184-1190. DOI: 10.1002/app.32543.10.1002/app.32543Suche in Google Scholar

Apelblat, A., & Manzurola, E. (1999). Solubilities of oacetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic, andptoluic acid and magnesium-DL-aspartate in water from T = (278 to 348) K. The Journal of Chemical Thermodynamics, 31, 85-91. DOI: 10.1006/jcht.1998.0424.10.1006/jcht.1998.0424Suche in Google Scholar

Augustin, M. A., & Berry, S. K. (1983). Efficacy of the antioxidants BHA and BHT in palm olein during heating and frying. Journal of the American Oil Chemists’ Society, 60, 1520-1523. DOI: 10.1007/bf02666575.10.1007/BF02666575Suche in Google Scholar

Bondet, V., Brand-Williams, W., & Berset, C. (1997). Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. LWT - Food Science and Technology, 30, 609-615. DOI: 10.1006/fstl.1997.0240. 10.1006/fstl.1997.0240Suche in Google Scholar

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28, 25-30. DOI: 10.1016/s0023-6438(95)80008-5.10.1016/S0023-6438(95)80008-5Suche in Google Scholar

Buchowski, H., Ksiazczak, A., & Pietrzyk, S. (1980). Solvent activity along a saturation line and solubility of hydrogenbonding solids. The Journal of Physical Chemistry, 84, 975-979. DOI: 10.1021/j100446a008.10.1021/j100446a008Suche in Google Scholar

Chalumot, G., Yao, C., Pino, V., & Anderson, J. L. (2009). Determining the stoichiometry and binding constants of inclusion complexes formed between aromatic compounds and β- cyclodextrin by solid-phase microextraction coupled to highperformance liquid chromatography. Journal of Chromatography A, 1216, 5242-5248. DOI: 10.1016/j.chroma.2009.05. 017.Suche in Google Scholar

Connors, K. A. (1995). Population characteristics of cyclodextrin complex stabilities in aqueous solution. Journal of Pharmaceutical Sciences, 84, 843-848. DOI: 10.1002/jps.2600840Suche in Google Scholar

Dalbe, B., Mur, G., & Wittig, E. (1990). French Patent No. 2,665,169 A1. Paris, France: French Patent Office.Suche in Google Scholar

Del Valle, E. M. M. (2004). Cyclodextrins and their uses: A review. Process Biochemistry, 39, 1033-1046. DOI: 10.1016/ s0032-9592(03)00258-9.10.1016/S0032-9592(03)00258-9Suche in Google Scholar

Dodziuk, H. (2006). Cyclodextrins and their complexes: Chemistry, analytical methods, applications. Weinheim, Germany: Wiley. DOI: 10.1002/3527608982.10.1002/3527608982Suche in Google Scholar

Dunn, R. O. (2005). Effect of antioxidants on the oxidative stability of methyl soyate (biodiesel). Fuel Processing Technology, 86, 1071-1085. DOI: 10.1016/j.fuproc.2004.11.003.10.1016/j.fuproc.2004.11.003Suche in Google Scholar

European Council Regulation (2006). Directive 2006/52/EC of the European Parliament and of the Council of 5 July 2006 amending Directive 95/2/EC on food additives other than colours and sweeteners and Directive 94/35/EC on sweeteners for use in foodstuffs, Pub. L. No. 2006/52/EC.Suche in Google Scholar

Fiege, H., Voges, H. W., Hamamoto, T., Umemura, S., Iwata, T., Miki, H., Fujita, Y., Buysch, H. J., Garbe, D., & Paulus, W. (2000). Phenol derivatives. In Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim, Germany: Wiley. DOI: 10.1002/14356007.a19 313.Suche in Google Scholar

Heryanto, R., Hasan, M., Abdullah, E. C., & Kumoro, A. C. (2007). Solubility of stearic acid in various organic solvents and its prediction using non-ideal solution models. ScienceAsia, 33, 469-472. DOI: 10.2306/sclenceasia1513-1874.2007.33.469.Suche in Google Scholar

Higuchi, T., & Connors, K. A. (1965). Phase-solubility techniques. In C. N. Reilly (Ed.), Advances in analytical chemistry and instrumentation (pp. 117-212). Weinheim, Germany: Wiley-Interscience.Suche in Google Scholar

Jamshidian, M., Tehrany, E. A., & Desobry, S. (2012). Release of synthetic phenolic antioxidants from extruded poly lactic acid (PLA) film. Food Control, 28, 445-455. DOI: 10.1016/j.foodcont.2012.05.005.10.1016/j.foodcont.2012.05.005Suche in Google Scholar

Leng, G., & Gries, W. (2012). Butylhydroxytoluol (BHT). In Deutsche Forschungsgemeinschaft (Ed.), The MAK collection for occupational health and safety (pp. 305-319). Weinheim, Germany: Wiley. DOI: 10.1002/3527600418.10.1002/3527600418Suche in Google Scholar

Liang, Y. C., May, C. Y., Foon, C. S., Ngan, M. A., Chuah, C. H., & Basiron, Y. (2006). The effect of natural and synthetic antioxidants on the oxidative stability of palm diesel. Fuel, 85, 867-870. DOI: 10.1016/j.fuel.2005.09.003.10.1016/j.fuel.2005.09.003Suche in Google Scholar

Loftsson, T., Ólafsdóttir, B. J., Fridriksdóttir, H., & Jónsdóttir, S. (1993). Cyclodextrin complexation of NSAIDSs: Physicochemical characteristics. European Journal of Pharmaceutical Sciences, 1, 95-101. DOI: 10.1016/0928-0987(93)90023-4.10.1016/0928-0987(93)90023-4Suche in Google Scholar

López-Nicolás, J. M., Rodríguez-Bonilla, P., & García-Carmona, F. (2009). Complexation of pinosylvin, an analogue of resveratrol with high antifungal and antimicrobial activity, by different types of cyclodextrins. Journal of Agricultural and Food Chemistry, 57, 10175-10180. DOI: 10.1021/jf902519d.10.1021/jf902519dSuche in Google Scholar PubMed

Mittelbach, M., & Schober, S. (2003). The influence of antioxidants on the oxidation stability of biodiesel. JAOCS, Journal of the American Oil Chemists’ Society, 80, 817-823. DOI: 10.1007/s11746-003-0778-x.10.1007/s11746-003-0778-xSuche in Google Scholar

Nie, Q., & Wang, J. K. (2005). Solubility of 16α,17α- epoxyprogesterone in six different solvents. Journal of Chemical & Engineering Data, 50, 1750-1752. DOI: 10.1021/je05 0195w.Suche in Google Scholar

Jia, Q. Z., Ma, P. S., Zhou, H., Xia, S. Q.,Wang, Q., & Qiao, Y. (2006). The effect of temperature on the solubility of benzoic acid derivatives in water. Fluid Phase Equilibria, 250, 165-172. DOI: 10.1016/j.fluid.2006.10.014.10.1016/j.fluid.2006.10.014Suche in Google Scholar

Saenger, W., Jacob, J., Gessler, K., Steiner, T., Hoffmann, D., Sanbe, H., Koizumi, K., Smith, S. M., & Takaha, T. (1998). Structures of the common cyclodextrins and their larger analogues beyond the doughnut. Chemical Reviews, 98, 1787-1802. DOI: 10.1021/cr9700181.10.1021/cr9700181Suche in Google Scholar PubMed

Sicińska, E. (2008). Przeciwutleniacze wżywno´sci. Przemysł Spożywczy, 5, 36-45. (in Polish) Szejtli, J. (1988). Cyclodextrin technology. In J. E. D. Davies (Ed.), Topics in inclusion science. Dordrecht, The Netherlands: Kluwer.Suche in Google Scholar

Yang, G. D., Li, C., Zeng, A. G., Guo, Y. L., Yang, X., & Xing, J. F. (2012). Solubility of imperatorin in ethanol + water mixtures. Journal of Molecular Liquids, 167, 86-88. DOI: 10.1016/j.molliq.2011.12.014.10.1016/j.molliq.2011.12.014Suche in Google Scholar

Yehye, W. A., Rahman, N. A., Alhadi, A. A., Khaledi, H., Ng, S. W., & Ariffin, A. (2012). Butylated hydroxytoluene analogs: Synthesis and evaluation of their multipotent antioxidant activities. Molecules, 17, 7645-7665. DOI: 10.3390/molecules17077645.712. Suche in Google Scholar

Received: 2014-6-6
Revised: 2014-9-26
Accepted: 2014-10-2
Published Online: 2015-3-3
Published in Print: 2015-5-1

© 2015

Artikel in diesem Heft

  1. Perovskite ceramics and recent experimental progress in reactor design for chemical looping combustion application
  2. Total reflection X-ray fluorescence analysis of fly ash from Bulgarian coal-fired power plants
  3. Ascorbic acid amperometric sensor using a graphene-wrapped hierarchical TiO2 nanocomposite
  4. Rapid determination of products of phenol hydrogenation in a supercritical water system using headspace gas chromatography
  5. Swelling of N-vinylcaprolactam–dodecyl methacrylate gel in {heptane + toluene} mixtures
  6. Extraction of Cu(II) with Acorga M5640 using hollow fibre liquid membrane
  7. Heat transfer in a jacketed agitated vessel equipped with multistage impellers
  8. Seasonal variation in alkaloid composition and antiproliferative activity of Stylophorum lasiocarpum (Oliv.) Fedde
  9. A polyacrylate prepared using polyurethane surfactants: properties of emulsion and film
  10. Efficient synthesis of glutaric acid from L-glutamic acid via diazoniation/hydrogenation sequence
  11. New insights into bromination process: effective preparation of Ambroxol
  12. A concise route to 4-aminomethylpyrazoles and 4-aminomethylisoxazoles from acetylacetone-derived hexahydropyrimidines under mild conditions
  13. Assessment of non-standard reaction conditions for asymmetric 1,3-dipolar organocatalytic cycloaddition of nitrone with α,β-unsaturated aldehydes
  14. β-Cyclodextrin as water-solubility enhancer for butylated hydroxytoluene
  15. Asymmetric polymerisation of substituted phenylacetylene using chiral Rh(2,5-norbornadiene)(L-proline) catalyst
Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0078/html?lang=de
Button zum nach oben scrollen