Home Analytical procedure for steroid profiling valid for Athlete Biological Passport
Article
Licensed
Unlicensed Requires Authentication

Analytical procedure for steroid profiling valid for Athlete Biological Passport

  • Anna Jarek , Katarzyna Kowalczyk , Piotr Chołbiński , Katarzyna Chajewska , Ewa Turek-Lepa , Andrzej Pokrywka , Ewa Bulska and Dorota Kwiatkowska EMAIL logo
Published/Copyright: December 12, 2014
Become an author with De Gruyter Brill

Abstract

Although various attempts have been made to eliminate doping in sport, hitherto they all have proved futile. Moreover, the main class of substances that jeopardises the fair play rule remains the same - anabolic androgenic steroids (AAS). To date, longitudinal monitoring of the fluctuations of the endogenous steroids content for a given athlete is regardeded as the most effective approach to the detection of AAS abuse. This is based on the fact that the activity of the steroid biosynthesis pathway may undergo significant changes in response to the AAS administration. This paper presents the entire analytical procedure for quantification of steroids crucial for the Athlete Biological Passport (ABP): testosterone, epitestosterone, dehydroepiandrosterone, androsterone, etiocholanolone, 5-α-androstandiol and 5-β-androstandiol. The procedure consists of a four-step sample preparation process followed by analysis by gas chromatography coupled with mass spectrometry. The limits of quantification for the substances listed above were; 0.44 ng mL−1, 2.07 ng mL−1, 1.24 ng mL−1, 62.49 ng mL−1, 36.20 ng mL−1, 16.90 ng mL−1 and 14.92 ng mL-1, respectively. Aqueous solutions containing deuterated and non-deuterated steroids were used for calibration purposes. Subsequently, the validation parameters, e.g., precision, accuracy and recovery were evaluated for each substance individually.

References

Ahmetov, I. I., Donnikov, A. E., & Trofimov, D. Y. (2014). ACTN3 genotype is associated with testosterone levels of athletes. Biology of Sport, 31, 105-108. DOI: 10.5604/20831 862.1096046.Search in Google Scholar

Delbeke, F. T., Van Eenoo, P., Van Thuyne, W., & Desmet, N. (2003). Prohormones and sport. Journal of Steroid Biochemistry & Molecular Biology, 83, 245-251. DOI: 10.1016/s0960-0760(02)00274-1.10.1016/S0960-0760(02)00274-1Search in Google Scholar

Eurachem Guide (1998). The fitness for purpose of analytical methods. A laboratory guide to method validation and related topics (1st ed.). Teddington, UK: Eurachem. Retrieved May 13, 2014, from http://eurachem.org/images/stories/Guides/pdf/valid.pdf Search in Google Scholar

Gronowska, A., Kwiatkowska, D., Pokrywka, A., Koteras, M., Turek-Lepa, E., & Szutowski, M. M. (2010). The alteration of the urinary steroid profile under the stress. Biology of Sport, 27, 3-9. DOI: 10.5604/20831862.907761.10.5604/20831862.907761Search in Google Scholar

Guan, F., Uboh, C. E., Soma, L. R., You, Y. W., Liu, Y., & Lia, X. Q. (2010). Correlation of product ion profiles with molecular structures of androgenic and anabolic steroids in ESI-MS/MS. Journal of Mass Spectrometry, 45, 1261-1269. DOI: 10.1002/jms.1803.10.1002/jms.1803Search in Google Scholar PubMed

Hintikka, L., Kuuranne, T., Leinonen, A., Thevis, M., Schänzer, W., Halket, J., Cowan, D., Grosse, J., Hemmersbach, P., Nielen, M. W. F., & Kostiainen, R. (2008). Liquid chromatographic-mass spectrometric analysis of glucuronideconjugated anabolic steroid metabolites: method validation and interlaboratory comparison. Journal of Mass Spectrometry, 43, 965-973. DOI: 10.1002/jms.1434.10.1002/jms.1434Search in Google Scholar PubMed

Jakobsson, J., Ekström, L., Inotsume, N., Garle, M., Lorentzon, M., Ohlsson, C., Roh, H. K., Carlström, K., & Rane, A. (2006). Large differences in testosterone excretion in Korean and Swedish men are strongly associated with a UDPglucuronosyl transferase 2B17 polymorphism. Journal of Clinical Endocrinology and Metabolism, 91, 687-693. DOI: 10.1210/jc.2005-1643.10.1210/jc.2005-1643Search in Google Scholar PubMed

Kennedy, M. C., & Lawrence, C. (1993). Anabolic steroids abuse and cardiac death. The Medical Journal of Australia, 158, 346-348.10.5694/j.1326-5377.1993.tb121797.xSearch in Google Scholar PubMed

Mareck, U., Geyer, H., Opfermann, G., Thevis, M., & Schänzer, W. (2008). Factors influencing the steroid profile in doping control analysis. Journal of Mass Spectrometry, 43, 877-891. DOI: 10.1002/jms.1457.10.1002/jms.1457Search in Google Scholar PubMed

Pendergast, H. M., Bannen, T., Erickson, T. B., & Honore, K. R. (2003). The toxic torch of the modern Olympic Games. Veterinary & Human Toxicology, 45, 97-102.Search in Google Scholar

Perry, P., Yates, W., & Andersen, K. (1990) Psychiatric symp toms associated with anabolic steroids: a controlled, retrospective study. Annals of Clinical Psychiatry, 2, 11-17. DOI: 10.3109/10401239009150000.10.3109/10401239009150000Search in Google Scholar

Pokrywka, A., Kwiatkowska, D., Kaliszewski, P., & Grucza, R. (2010). Some aspects concerning modifications of the list of prohibited substances and methods in sport. Biology of Sport, 27, 307-314. DOI: 10.5604/20831862.927498.10.5604/20831862.927498Search in Google Scholar

Pokrywka, A., Kaliszewski, P., Majorczyk, E., & Zembroń- _Lacny, A. (2013). Genes in sport and doping. Biology of Sport, 30, 155-161. DOI: 10.5604/20831862.1059606.10.5604/20831862.1059606Search in Google Scholar PubMed PubMed Central

Pope, H. G., Jr., & Katz, D. L. (1988). Affective and psychotic symptoms associated with anabolic steroid use. American Journal of Psychiatry, 145, 487-490.10.1176/ajp.145.4.487Search in Google Scholar

Pope, H. G., Jr., & Katz, D. L. (1994). Psychiatric and medical effects of anabolic-androgenic steroid use. A control study of 160 athletes. Archives of General Psychiatry, 51, 375-382. DOI: 10.1001/archpsyc.1994.03950050035004.10.1001/archpsyc.1994.03950050035004Search in Google Scholar

Pozo, O. J., Deventer, K., Van Eenoo, P., & Delbeke, F. T. (2008). Efficient approach for the comprehensive detection of unknown anabolic steroids and metabolites in human urine by liquid chromatography - electrospray-tandem mass spectrometry. Analytical Chemistry, 80, 1709-1720. DOI: 10.1021/ac7020757.10.1021/ac7020757Search in Google Scholar

Shackleton, C. H. L., Phillips, A., Chang, T., & Li, Y. (1997). Confirming testosterone administration by isotope ratio mass spectrometric analysis of urinary androstanediols. Steroids, 62, 379-387. DOI: 10.1016/s0039-128x(96)00253-x.10.1016/S0039-128X(96)00253-XSearch in Google Scholar

Schänzer, W., & Donike, M. (1993). Metabolism of anabolic steroids in man: synthesis and use of reference substances for identification of anabolic steroid metabolites. Analytica Chimica Acta, 275, 23-48. DOI: 10.1016/0003-2670(93)80274-o.10.1016/0003-2670(93)80274-OSearch in Google Scholar

Sottas, P. E., Robinson, N., Rabin, O., & Saugy, M. (2011). The Athlete Biological Passport. Clinical Chemistry, 57, 969-976. DOI: 10.1373/clinchem.2011.162271.10.1373/clinchem.2011.162271Search in Google Scholar

Thiblin, J., & Petersson, A. (2005). Pharmacoepidemiology of anabolic androgenic steroids: a review. Fundamental & Clinical Pharmacology, 19, 27-44. DOI: 10.1111/j.1472-8206.2004.00298.x.10.1111/j.1472-8206.2004.00298.xSearch in Google Scholar

Thieme, D., Anielski, P., Grosse, J., Sachs, H., & Mueller, R. K. (2003). Identification of anabolic steroids in serum, urine, sweat and hair: Comparison of metabolic patterns. Analytica Chimica Acta, 483, 299-306. DOI: 10.1016/s0003-2670(02)01604-5.10.1016/S0003-2670(02)01604-5Search in Google Scholar

Van Renterghem, P., Van Eenoo, P., Van Thuyne, W., Geyer, H., Schänzer, W., & Delbeke, F. T. (2008). Validation of an extended method for the detection of the misuse of endogenous steroids in sports, including new hydroxylated metabolites. Journal of Chromatography B, 876, 225-235. DOI: 10.1016/j.jchromb.2008.10.047.10.1016/j.jchromb.2008.10.047Search in Google Scholar PubMed

World Anti-Doping Agency (2012a). 2012 anti-doping testing figures report. Retreived May 13, 2014, from http://www.wada-ama.org/Documents/Resources/Testing-Figures/WADA-2012-Anti-Doping-Testing-Figures-Report-EN.pdf Search in Google Scholar

World Anti-Doping Agency (2012b). International standard for laboratories V7.0. Retreived June 11, 2014, from http://www.wada-ama.org Search in Google Scholar

World Anti-Doping Asociation (2014). Athlete Biological Passport operating guidelines. Retreived May 13, 2014, from http://www.wada-ama.org/Documents/WorldAnti-DopingProgram/WADP-IS-Laboratories/TechnicalDocuments/WADA-TD2014-EAAS-Endogenous-Anabolic-Androgenic-Steroids-EN.pdf Search in Google Scholar

Wang, J. Z., Wu, M. T., Liu, X., & Xu, Y. X. (2011). Profiling of urinary steroids by gas chromatography-mass spectrometry detection and confirmation of androstenedione administration using isotope ratio mass spectrometry. Steroids, 76, 1560-1565. DOI: 10.1016/j.steroids.2011.09.007.10.1016/j.steroids.2011.09.007Search in Google Scholar PubMed

Yoshida, E. M., Erb, S. R., Scudamore, C. I., & Owen, D. A. (1994). Severe cholestasis and jaundice secondary to an esterified testosterone, a non C-17 alkylated anabolic steroid. Journal of Clinical Gastroenterology, 18, 268-272. 10.1097/00004836-199404000-00036Search in Google Scholar PubMed

Received: 2013-11-25
Revised: 2014-5-12
Accepted: 2014-5-12
Published Online: 2014-12-12
Published in Print: 2015-2-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Selection and design of ionic liquids as solvents in extractive distillation and extraction processes
  2. Analytical procedure for steroid profiling valid for Athlete Biological Passport
  3. Fabrication of paper-based analytical device by silanisation of filter cellulose using alkyltrimethoxysilane coupled with UV radiation
  4. Synthesis, characterisation and photocatalytic activity of Ag+- and Sn2+-substituted KSbTeO6
  5. Dysprosium pertraction through facilitated supported liquid membrane using D2EHPA as carrier
  6. Volatile compounds composition and antioxidant activity of bee pollen collected in Lithuania
  7. Self-penetrating and interpenetrating 3D metal–organic frameworks constructed from 4-(4-carboxyphenoxy)-phthalic acid and N-donor auxiliary ligands
  8. Preparation of ceramic γ-Al2O3–TiO2 nanofiltration membranes for desalination
  9. Promoting effect of group VI metals on Ni/MgO for catalytic growth of carbon nanotubes by ethylene chemical vapour deposition
  10. Microwave-assisted solvent-free synthesis and luminescence properties of 2-substituted-4,5-di(2-furyl)-1H-imidazoles
  11. Synthesis of potential inhibitors of glycosyltransferases representing UDP-GlcNAc
  12. Development of transition state analogue inhibitors for N-acetylglycosyltransferases bearing D-psicoor D-tagatofuranose scaffolds
  13. Efavirenz–eudragit E-100 nanoparticle-loaded aerosol foam for sustained release: in-vitro and ex-vivo evaluation
  14. Photochromic and molecular switching behaviour of Schiff base-containing pyrazolone ring
  15. Improvements to CO2 headspace biodegradability test
  16. Synthesis of corn rootworm pheromones from commercial diols
Downloaded on 30.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0030/html?srsltid=AfmBOorSf7rO2E416_RKMV0O67S7mM5fiwL5qhMU4grP8_BP8gjzSSH1
Scroll to top button